scholarly journals Influence of Waste Glass Powder Addition on the Microstructure and Mechanical Properties of Autoclaved Building Materials

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 434
Author(s):  
Wojciech Szudek ◽  
Łukasz Gołek ◽  
Grzegorz Malata ◽  
Zdzisław Pytel

Lime quartz samples in which ground quartz sand was gradually substituted with waste glass powder (GP) were obtained under hydrothermal conditions to determine the influence of GP addition on the microstructure (observed by SEM), phase composition (analyzed by XRD), and compressive strength of autoclaved building materials. An additional series containing analytical grade NaOH and no GP was formed to evaluate the effect of sodium ions on tobermorite formation and its impact on the mechanical properties of the samples. GP addition hindered the formation of tobermorite during autoclaving. Instead, a higher amount of an amorphous and semi-crystalline C–S–H phase formed, leading to the densification of the composite matrix. Nevertheless, tobermorite-like structures were found during both XRD and SEM analyses, proving that the presence of small amounts of Al3+ ions allowed, to an extent, for the stabilization of the phase despite the high sodium content. The compressive strength values indicate that the presence of alkali in the system and the resulting formation of additional portions of C–S–H have a beneficial influence on the mechanical properties of autoclaved composites. However, the effect fades with increasing glass powder content which, together with a slight expansion of the samples, suggests that at high sand substitution levels, an alkali–silica reaction takes place.

2019 ◽  
Vol 22 (3) ◽  
pp. 208-212
Author(s):  
Sheelan M. Hama ◽  
Alhareth M. Abdulghafor ◽  
Mohammed Tarrad Nawar

In this work, waste glass powder from broken windows and plastic fibers from waste polyethylene terephthalate bottles are utilized to produce an economical self-compact concrete. Fresh properties (slump flow diameter, slump Flow T50, V. Funnel, L–Box), mechanical properties (Compressive strength and Flexural strength) and impact resistance of self-compact concrete are investigated. 15% waste glass powder as a partial replacement of cement with five percentages of polyethylene terephthalate plastic waste were adopted: 0% (reference), 0.5%, 0.75%, 1%, 1.25% and 1.5% by volume. It seems that the flow ability of self-compact concrete decreases with the increasing of the amount of plastic fibers. The compressive strength was increased slightly with plastic fiber content up to (0.75%), about 4.6% For more than (0.75%) plastic fiber. The compressive strength began to decrease about 15.2%. The results showed an improvement in flexural strength and an impact on the resistance in all tested specimens’ content of the plastic fibers, especially at (1.5%) fibers.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


2013 ◽  
Vol 871 ◽  
pp. 171-178
Author(s):  
Qing Qiu Kong ◽  
Guo Jun Ke ◽  
Dan Wang

The effect of hydrothermal activation indifferent temperature and pressure conditions on the pozzolanic activity of waste glass powder was discussed. The waste glass powder was treated at 108°C, 0.15MPa, 116°C, 0.18MPa and 121°C, 0.2MPa for 2h in an autoclave respectively after milling to 4215cm2/g. Mortar was made with untreated and hydrothermal activated waste glass power replacement of cement at 20% respectively, then tested for compressive strength at 3, 7, 14 , 28 and 90 days. Results showed that compressive strength of cement mortar had varying degrees of decline when replacing cement with untreated waste glass powder, comparing to the control one. Decline amplitude was large at early age and small at late age. Activity of waste glass powder was significantly improved after hydrothermal treatment. Compressive strength of mortar improved as temperature and pressure elevated, obtaining optimal strength at 121°C, 0.2MPa. Compressive strength of mortar with hydrothermal activated glass powder was higher than that with untreated glass powder at all age with 20% cement replacement. Compressive strength increased 5.3% ~ 13.6% at 3 d, 6.8%~9.7% at 28 d, 9.7% ~ 17.7% at 90 d. The essence of hydrothermal activation was the corrosion of water in the glass.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2308-2314

In the present research, the feasibility of using waste glass as replacement for natural river sand was investigated. Glass wastes dumped in landfill pose environmental pollution and research on its reuse in construction industries need to be carried out . An experimental work was performed to study the slump , unit weight, compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, ultrasonic pulse velocity, dry density and chloride ion penetration test at different curing ages at 7, 14 and 28 days of concrete. Investigation on concrete properties with various % of glass powder (0%, 5%, 10%, 15% and 20% ) were done on fresh and hardened concrete. The complete stress-strain behaviour, mechanical strength and durability properties of concrete with partial replacement of natural river sand by glass powder were investigated through standard tests.The optimum glass powder content is found out by testing the specimens prepared using different grades of concrete (M20, M30, M40,M50 and M60). All the fresh concrete mixes were tested also for the workability properties by conducting slump cone tests. According to the test results, it is observed that the slump value of fresh concrete increase gradually with % of glass powder upto 40% replacements. The gradual increase in compressive strength, flexural strength and split tensile strength with the addition of waste glass powder upto 30% was observed. The addition of 40% and 50% replacements, the strength values of concrete are comparable with that of the control mix. The density and modulus of elasticity of concrete also gradually increases from 0% to 50% addition of glass powder in the concrete. The Rapid Chloride Penetration Test (RCPT) test results show that the chloride penetration rate is considerably reduced with addition of glass powder and permeability properties of concrete is enhanced upto 50% replacement levels. In order to prepare the concrete with compressive strengthThe optimum glass powder content is found to be 50% can be used as the replacement material for fine aggregates without much compromise on the strength and durability properties and to achieve economic and environmental benefits


2021 ◽  
Vol 894 ◽  
pp. 85-93
Author(s):  
Tanikan Thongchai ◽  
Krisana Poolsawat

This research mainly focused on the properties of decorative white cement tiles which made from waste glass and white cement. The ratio of waste glass powder and white cement were studied at 10 : 90, 15 : 85, 20 : 80, 30 : 70, 40 : 60, 50 : 50, 60 : 40 and 70 : 30 by using water content at 30 %wt. All components were mixed and cast into the mould. Decorative white cement tiles were curing at 14, 21 and 28 days. In order to characterize physical and mechanical properties, all tiles were measured density, water absorption and compressive strength. According to the results, it can be obviously seen that density increased and water absorption decreased with increasing waste glass powder content. The highest compressive strength of around 36.5 MPa was found at 20 %wt of waste glass powder. However, compressive strength decreased with increasing waste glass powder over 20 %wt (waste glass powder 20: white cement 80). It was found that the lowest compressive strength of around 30.58 MPa was found at 70 %wt of waste glass powder. Curing time also affected properties as it was found that increasing curing time to 28 days resulted in increasing of density and compressive strength. In order to study how long does essential oil last on decorative white cement tiles, the orange essential oil at 1, 5 and 10 %wt were added into the white cement paste by using waste glass powder : white cement at 20 : 80 with 30 %wt of water. Decorative white cement tiles were smelled by 30 people every morning for 30 days and it can be found that 10 %wt of orange essential oil last longest on the decorative white cement tiles with 22 days.


Sign in / Sign up

Export Citation Format

Share Document