scholarly journals Low-Rate Characterization of a Mechanical Inerter

Machines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 32 ◽  
Author(s):  
Karthik Madhamshetty ◽  
James Manimala

In this study, improved analytical models, numerical parametric explorations, and experimental characterization are presented for a mechanical inerter to bring out dependencies for dynamic mass amplification under low rates (<5 Hz) of excitation. Two common realizations of the inerter—the ball-screw and the rack-and-pinion versions—are considered. Theoretical models incorporating component inertias and sizing were developed for both versions. The dependence of the specific inertance on key design parameters is explored through simulations. Based on these simulations, a prototype rack-and-pinion inerter delivering a specific inertance above 90 was designed, fabricated, and tested under low-rate displacement and acceleration-controlled excitations. The measured specific inertance was found to display an exponential decline with an increase in excitation frequency for both cases. Deviations from predictions are attributable to the frequency dependence of internal stiffness and damping in the fabricated prototype. Using a phase-matching procedure for a representative lumped model, the internal stiffness and damping in the prototype were estimated. Examination of the phase spectra reveals an influence of the excitation frequency on the internal stiffness, damping, and consequently specific inertance. Further, based on the results of this study, design perspectives for such mechanical inerters, which are seeing increasing use in several low-frequency applications, are also presented. It is envisioned that this approach can be utilized to subsume the specific nonlinear characteristics of individual inerters into a simple yet unsimplistic model that can be used to more efficiently and accurately predict the behavior of multi-element, inerter-based systems that employ them.


Author(s):  
S.D. Singh ◽  
Rakesh Mathur ◽  
R.K. Srivastava

This study aims at dynamic behaviour of a Linke Hofmann Busch coach and its sensitive parameters against track irregularities considering various suspended equipment. The randomly distributed track irregularities characterized in terms of Indian Rail Road PSD standard are considered main source of excitation that produces undesired vibrations. The coach body and bogie frame subjected to 4 degree of freedom motions (bounce, lateral, roll and pitch) are modelled using finite element methodology where system matrices such as mass, stiffness and damping matrices are obtained for eigenvalue solution. Using modal parameters obtained as above and PSD of track irregularities, both vertical and lateral mean square acceleration responses (MSAR) are determined at various points of concern on coach body. It is observed that the vertical peak responses occur in low frequency range (0-10 Hz) which is caused by long wavelength irregularities of track that causes discomfort. It is also observed that constant peak lateral responses occur at still lower frequency as compared to vertical response which again causes discomfort to vehicle riders. This concludes that there is a further scope of improvement in comfort level with minor adjustments of suspended equipment of a LHB coach. A sensitivity analysis based on the partial derivatives against FRF displacement is conducted and most sensitive design parameters are obtained for optimization to improve ride comfort. It is suggested that if the mass of bio toilet tanks and relative position of battery box + transformer unit i.e. most sensitive parameters of suspended equipment are changed then the ride comfort can be improved



Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 700
Author(s):  
Maria Concetta Oddo ◽  
Giovanni Minafò ◽  
Lidia La Mendola

In recent years, the scientific community has focused its interest on innovative inorganic matrix composite materials, namely TRM (Textile Reinforced Mortar). This class of materials satisfies the need of retrofitting existing masonry buildings, by keeping the compatibility with the substrate. Different recent studies were addressed to improve the knowledge on their mechanical behaviour and some theoretical models were proposed for predicting the tensile response of TRM strips. However, this task is complex due to the heterogeneity of the constituent materials and the stress transfer mechanism developed between matrix and fabric through the interface in the cracked stage. This paper presents a state-of-the-art review on the existing constitutive models for the tensile behavior of TRM composites. Literature experimental results of tensile tests on TRM coupons are presented and compared with the most relevant analytical models proposed until now. Finally, a new experimental study is presented and its results are used to further verify the reliability of the literature expressions.



Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.



2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Javaid Ahmad ◽  
Shaohong Cheng ◽  
Faouzi Ghrib

Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.



2011 ◽  
Vol 7 (S284) ◽  
pp. 411-413 ◽  
Author(s):  
David Sanchez ◽  
Berrie Giebels ◽  
Pascal Fortin ◽  

AbstractMatching the broad-band emission of active galaxies with the predictions of theoretical models can be used to derive constraints on the properties of the emitting region and to probe the physical processes involved. AP Librae is the third low frequency peaked BL Lac (LBL) detected at very high energy (VHE, E>100GeV) by an Atmospheric Cherenkov Telescope; most VHE BL Lacs (34 out of 39) belong to the high-frequency and intermediate-frequency BL Lac classes (HBL and IBL). LBL objects tend to have a higher luminosity with lower peak frequencies than HBLs or IBLs. The characterization of their time-averaged spectral energy distribution is challenging for emission models such as synchrotron self-Compton (SSC) models.



2021 ◽  
Vol 11 (2) ◽  
pp. 492
Author(s):  
Levente Rácz ◽  
Bálint Németh

Exceeding the electric field’s limit value is not allowed in the vicinity of high-voltage power lines because of both legal and safety aspects. The design parameters of the line must be chosen so that such cases do not occur. However, analysis of several operating power lines in Europe found that the electric field strength in many cases exceeds the legally prescribed limit for the general public. To illustrate this issue and its importance, field measurement and finite element simulation results of the low-frequency electric field are presented for an active 400 kV power line. The purpose of this paper is to offer a new, economical expert system based on dynamic line rating (DLR) that utilizes the potential of real-time power line monitoring methods. The article describes the expert system’s strengths and benefits from both technical and financial points of view, highlighting DLR’s potential for application. With our proposed expert system, it is possible to increase a power line’s safety and security by ensuring that the electric field does not exceed its limit value. In this way, the authors demonstrate that DLR has other potential applications in addition to its capacity-increasing effect in the high voltage grid.



Author(s):  
Kai Feng ◽  
Xueyuan Zhao ◽  
Zhiyang Guo

With increasing need for high-speed, high-temperature, and oil-free turbomachinery, gas foil bearings (GFBs) have been considered to be the best substitutes for traditional oil-lubricated bearings. A multi-cantilever foil bearing (MCFB), a novel GFB with multi-cantilever foil strips serving as the compliant underlying structure, was designed, fabricated, and tested. A series of static and dynamic load tests were conducted to measure the structural stiffness and equivalent viscous damping of the prototype MCFB. Experiments of static load versus deflection showed that the proposed bearing has a large mechanical energy dissipation capability and a pronounced nonlinear static stiffness that can prevents overly large motion amplitude of journal. Dynamic load tests evaluated the influence of motion amplitude, loading orientation and misalignment on the dynamic stiffness and equivalent viscous damping with respect to excitation frequency. The test results demonstrated that the dynamic stiffness and damping are strongly dependent on the excitation frequency. Three motion amplitudes were applied to the bearing housing to investigate the effects of motion amplitude on the dynamic characteristics. It is noted that the bearing dynamic stiffness and damping decreases with incrementally increasing motion amplitudes. A high level of misalignment can lead to larger static and dynamic bearing stiffness as well as to larger equivalent viscous damping. With dynamic loads applied to two orientations in the bearing midplane separately, the dynamic stiffness increases rapidly and the equivalent viscous damping declines slightly. These results indicate that the loading orientation is a non-negligible factor on the dynamic characteristics of MCFBs.



Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Akira Fukukita ◽  
Katsuaki Sunakoda

We address a simultaneous optimal design problem of a semi-active control law and design parameters in a vibration control device for civil structures. The Vibration Control Device (VCD) that is being developed by authors is used as the semi-active control device in the present paper. The VCD is composed of a mechanism of a ball screw with a flywheel for the inertial resistance force and an electric motor with an electric circuit for the damping resistance force. A new bang-bang type semi-active control law referred to as Inverse Lyapunov Approach is proposed as the semi-active control law. In the Inverse Lyapunov Approach the Lyapunov function is searched so that performance measures in structural vibration control are optimized in the premise of the bang-bang type semi-active control based on the Lyapunov function. The design parameters to determine the Lyapunov function and the design parameters of the VCD are optimized for the good performance of the semi-active control system. The Genetic Algorithm is employed for the optimal design.



Author(s):  
Jason C. Wilkes ◽  
Dara W. Childs

For several years, researchers have presented predictions showing that using a full tilting-pad journal bearing (TPJB) model (retaining all of the pad degrees of freedom) is necessary to accurately perform stability calculations for a shaft operating on TPJBs. This paper will discuss this issue, discuss the importance of pad and pivot flexibility in predicting impedance coefficients for the tilting-pad journal bearing, present measured changes in bearing clearance with operating temperature, and summarize the differences between measured and predicted frequency dependence of dynamic impedance coefficients. The current work presents recent test data for a 100 mm (4 in) five-pad TPJB tested in load on pad (LOP) configuration. Measured results include bearing clearance as a function of operating temperature, pad clearance and radial displacement of the loaded pad (the pad having the static load vector directed through its pivot), and frequency dependent stiffness and damping. Measured hot bearing clearances are approximately 30% smaller than measured cold bearing clearances and are inversely proportional to pad surface temperature; predicting bearing impedances with a rigid pad and pivot model using these reduced clearances results in overpredicted stiffness and damping coefficients that are several times larger than previous comparisons. The effect of employing a full bearing model versus a reduced bearing model (where only journal degrees of freedom are retained) in a stability calculation for a realistic rotor-bearing system is assessed. For the bearing tested, the bearing coefficients reduced at the frequency of the unstable eigenvalue (subsynchronously reduced) predicted a destabilizing cross-coupled stiffness coefficient at the onset of instability within 1% of the full model, while synchronously reduced coefficients for the lightly loaded bearing required 25% more destabilizing cross-coupled stiffness than the full model to cause system instability. The same stability calculation was performed using measured stiffness and damping coefficients at synchronous and subsynchronous frequencies. These predictions showed that both the synchronously measured stiffness and damping and predictions using the full bearing model were more conservative than the model using subsynchronously measured stiffness and damping, an outcome that is completely opposite from conclusions reached by comparing different prediction models. This contrasting outcome results from a predicted increase in damping with increasing excitation frequency at all speeds and loads; however, this increase in damping with increasing excitation frequency was only measured at the most heavily loaded conditions.



2014 ◽  
Vol 926-930 ◽  
pp. 1857-1860
Author(s):  
Zhou Zheng ◽  
Meng Yuan Li ◽  
Wei Jiang Wang

In order to reduce the burden of the calculation and the low frequency resolution of the tradition GNSS signal intermediate narrow band anti-jamming method, it introduces a high efficient approach of narrow band interference rejection based on baseband GNSS signal processing. After digital down conversion to baseband and down sampling to a low rate, the interference is removed in frequency domain. According to the theoretical analysis and simulation, it claims that the method can reduce the calculation and increase the detection resolution in frequency domain which will realize a high efficient interference rejection.



Sign in / Sign up

Export Citation Format

Share Document