scholarly journals Influence of Ball-Burnishing Process on Surface Topography Parameters and Tribological Properties of Hardened Steel

Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
Andrzej Dzierwa ◽  
Angelos Markopoulos

The ball-burnishing process is a particular finishing treatment that can improve selected properties of different materials. In the present study, the ball-burnishing technique was used to investigate the effect of input parameters of processes on selected surface layer features like surface roughness and residual stresses of the 42CrMo4 steel surfaces. The burnishing process was conducted on Haas CNC Vertical Mill Center VF-3 using a tool with tungsten carbide tip. A further objective of our research was to improve tribological properties of the aforementioned steel by the ball-burnishing process. The results of the investigations showed that it was possible to reduce the root mean square height of the surface Sq from 0.522 μm to 0.051 μm and to increase wear resistance compared to ground samples.

Author(s):  
M.N. Obaid ◽  
S.H. Radhi

Purpose: The number of people suffering from Degenerative Disc Disease (DDD) is increasing. The disease causes heavy pain and restrict a number of day-to-day life activities. In extreme cases, the degraded disc is removed under total disc replacement which is usually made up of Ultra-High Molecular Weight Polyethylene (UHMWPE). The material has astounding biocompatible characteristics mechanical properties and wear resistance. However, these characteristics are insufficient in arthroplasty application. Therefore, research investigations are ongoing to improve tribological properties through reinforcement that may result in a composite material of UHMWPE. Thus the current study is aimed at reinforcing UHMWPE with short fibres of polyesters to enhance the tribological properties and surface characteristic so as to improve wear resistance and nourish the fibroblast cells on synthetic disc. Design/methodology/approach: The researcher prepared UHMWPE composite material, reinforced with different weight fractions of short polyester fibres (2, 4, 6, 8 and 10% following hot press method. Further pin-on-disc device was used to study the tribological properties (coefficient of friction and volume of wear). The study tested surface roughness and surface characteristics by atomic force microscopy (AFM) device, hardness by shore D device, contact angle to study the effect of polyester short fibres on wettability of UHMWPE surface and tested the thermal properties and crystalline degree using Differential Scanning Calorimetry measurement (DSC) device. Findings: The results infer that the wear resistance got improved when using 2% w.t polyester though it got decreased initially. However, the value was still more than neat UHMWPE. There was a decrease observed in coefficient of friction, but after 4 w.t% polyester, the coefficient of friction got increased due to increasing percentage of fibres which make it harder and stiff compared to UHMWPE. There was a decline observed in surface roughness due to alignment of the fibres with smooth surface. The contact angle got increased in a moderate range while the roughness enhanced the growth of fibroblast cell. The hardness of composite material got increased, because the fibres turned stiffer and harder than the matrix. DSC results infer the improvements in thermal stability due to high thermal properties of polyester fibres compared to UHMWPE. The degree of crystallinity got increased which in turn enhanced wear resistance, especially at 6 w.t % polyester fibres. There was a mild increase observed in density since the density of polyester is higher than polymer. Research limitations/implications: The major challenge was the dispersion of fibres. Uniform distribution of fibres within the matrix (UHMWPE) was achieved through two steps of mixing processes such as mechanical mixture and twin extruder. In future studies, fatigue tests must be conducted to study the behaviour of prepared composite materials under fatigue cycle. Practical implications: A significant objective is how to connect among different properties to obtain good improvement in tribological and surface properties so as to enhance wear resistance and growth of fibrolase cells. Originality/value: In this study, polymeric short fibres were used as reinforcement with polymeric matrix to enhance the wettability of fibres with matrix. In this way, the bonding among them got increased which supports the tribological, surface, and crystalline behaviour.


2018 ◽  
Vol 249 ◽  
pp. 03002 ◽  
Author(s):  
S Swirad

The objective of this research aims to improve surface roughness of the hardened 145Cr6 (DIN) steel using the hydrostatic burnishing tool. The ball burnishing process with hydrostatic tools is very economical finishing process for various types of machine parts. This process reduces the height of surface unevenness, introduces compressive stresses at high depth (approx. 1 mm) and increase the hardness of the surface layer. The flat surface optimal ball burnishing parameters have been determined after conducting the Taguchi L9 matrix experiment. The input parameters are speed, burnishing force and burnishing width. It also showed a positive effect of hydrostatics burnishing on roughness and geometric structure of the surface. In most cases, the result is anisotropic surface, reduced roughness, reduced amplitude values of parameters such as: Sa, Sz.


2017 ◽  
Vol 54 (2) ◽  
pp. 64-71
Author(s):  
A. Leitans ◽  
J. Lungevics ◽  
J. Rudzitis ◽  
A. Filipovs

Abstract The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.


2015 ◽  
Vol 649 ◽  
pp. 112-119
Author(s):  
Quoc Nguyen Banh ◽  
Fang Jung Shiou

This study aims to optimize the small ball-burnishing process parameters in order to simultaneously improve the surface roughness and superficial surface hardness of the STAVAX material. A newly developed load cell embedded double spring mechanism burnishing tool was designed and fabricated. By utilizing the hybrid grey-based Taguchi method with principal component analysis (PCA) and entropy measurement the optimal process condition was the combination of the burnishing force at 10 N, the step-over at 6 μm, the number of passes at 3 times, the grease for lubricant, and the burnishing speed at 500 mm/min. The burnishing force, step-over, and the number of passes were found to have the main effects on the burnished surfaces among the five chosen control factors. The burnished surface of STAVAX material under the optimal condition was improved from Ra 0.85 to Ra 0.079 for average surface roughness, and from 67.3 HR30N to 72.7 HR30N in term of superficial hardness.


Author(s):  
Moosa Arsalani ◽  
Mohammad Reza Razfar ◽  
Amir Abdullah ◽  
Mohsen Khajehzadeh

One of the major problems encountered in hardened components such as roller bearings, which work under fatigue loading conditions, is that the requirement of higher surface finishes (≈0.15 µm Ra) cannot be achieved by the sequential hard turning and ball burnishing processes. Such high surface qualities can be generated by additional finishing operations such as grinding. However, despite the improvement in the surface roughness, the grinding process increases both the tensile surface residual stresses and crack initiation sites on the ground surface; therefore, the fatigue behavior of the component may deteriorate. In this study, the effects of adding a grinding operation before the ball burnishing process on the fatigue behavior of AISI 4130 steel were experimentally studied. According to the achieved results, the burnished pre-ground samples show a considerable reduction in the final surface roughness and, at the same time, higher microhardness, higher endurance limit, and smaller area of the fatigue cracking zone. The burnished pre-turned and burnished pre-ground samples showed 4.24% and 10.95% improvements in the endurance limit compared to that of the turned samples, respectively.


Sign in / Sign up

Export Citation Format

Share Document