scholarly journals Influence of Blade Type on the Flow Structure of a Vortex Pump for Solid-Liquid Two-Phase Flow

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 353
Author(s):  
Hui Quan ◽  
Yanan Li ◽  
Lei Kang ◽  
Xinyang Yu ◽  
Kai Song ◽  
...  

Vortex pumps have good non-clogging performance owing to their impellers being retracted into retraction cavities, but they are much less efficient than ordinary centrifugal pumps. In this paper, numerical simulations were performed on a model of the 150WX200-20 vortex pump for four different blade types, and the influence of blade structure on pump performance was determined. The simulations revealed the existence of axial vortices in the flow passage between the blades in the impeller region. The geometric characteristics of these axial vortices were more regular in two-phase solid-liquid flow than single-phase liquid flow. The presence of the solid phase reduced the vortex strength compared with the single-phase flow and suppressed the increase in size of the secondary circulation vortex. It was found, however, that the blade shape had a greater influence on the circulating flow than the presence of the solid phase. The flow state of the medium flowing out of the impeller domain had a direct effect on the circulating flow with this effect being related to the law governing the flow of the medium in the flow channel between the blades. It was found that the performance of a front-bent blade was the best and that of a curved blade the worst. This influence of blade type on the internal flow structure was used to further explain the relationship between the internal flow structure and the external characteristics of the vortex pump, the understanding of which is crucial for blade selection and hydraulic optimization.

Author(s):  
Ryan Lewis ◽  
Hayley Schneider ◽  
Yunda Wang ◽  
Ray Radebaugh ◽  
Y. C. Lee

Micro cryogenic coolers (MCCs) operating in the Joule-Thomson cycle with mixed refrigerants offer an attractive way to decrease the size, cost, and power draw required for cryogenic cooling. Recent studies of MCCs with mixed refrigerants have, when employing pre-cooling, shown pulsating flow-rates and oscillating temperatures, which have been linked to the refrigerant flow regime in the MCC. In this study we investigate those flow regimes. Using a high-speed camera and optical microscopy, it is found that the pulsations in flow correspond to an abrupt switch from single-phase vapor flow to single-phase liquid flow, followed by 2-phase flow in the form of bubbles, liquid slugs, and liquid slug-annular rings. After this period of 2-phase flow, the refrigerant transitions back to single-phase vapor flow for the cycle to repeat. Under different pre-cooling temperatures, the mole fraction of the vapor-phase refrigerant, as measured by molar flow-rate, agrees reasonably well with the quality of the refrigerant at that temperature as calculated by an equation of state. The frequency of pulsation increases with liquid fraction in the refrigerant, and the volume of liquid in each pulse only weakly increases with increasing liquid fraction. The cooling power of the liquid-flow is up to a factor of 7 greater than that of the 2-phase flows and single-phase vapor flow.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Hui Quan ◽  
Jing Cheng ◽  
Ying Guo ◽  
Lei Kang ◽  
Guoyi Peng

Abstract Installing an inducer upstream of the main impeller is an effective approach for improving the performances of a centrifugal pump. In order to study the influence of inducer on the internal flow characteristics and evolution of vortex pump, the numerical simulation and experimental test of the 150WX-200-20 vortex pump have been done by the principle of computational fluid dynamics, to acquire performance and internal flow structure change of the vortex pump with inducer and without inducer. Based on these, the energy conversion of vortex pump is combined with the changes of the through-flow and circulating-flow of the internal flow structure. Through analyzing the influence of inducer on it, the energy conversion characteristic of vortex pump is revealed. The results show that adding the inducer can guarantee the power capacity of the vortex pump and improve the anticavitation performance, so as to improve the pump head and flows. Equipped with suitable for transporting solid liquid two phase flow of the screw centrifugal inducer, it can effectively weaken the existence of circulating-flow and significantly improve the flow situation in the impeller field. Adding inducer can weaken axial force of vortex pump and enhance stability of pump. And under the condition of no clogging, the conclusions are of great significance for improving the power capacity and fluid energy conversion of the vortex pump. In addition, it is a good method to weaken the axial force of the pump and enhance the stability of the pump system by adding the inducer.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 669
Author(s):  
Kangxin Chen ◽  
Houfa Shen

Macrosegregation, a serious defect formed during the solidification of steel ingots, impairs the performance of the final components. To predict macrosegregation caused by thermal-solutal convection and solid deformation, a volume-averaged single-phase/two-phase integrated model is developed. During the deformation stage, the two-phase model coupling the solid deformation and liquid flow in the mushy zone is utilized. Before or after the deformation stage, the motion of the solid phase is neglected, and the single-phase model is solved. A 450 kg steel ingot punching test is considered for application. The results show that when the solid shell of the ingot is being punched, the solid phase in the mushy core at punching height is compressed, and a relative liquid flow is induced. This in turn causes a transition of positive segregation to negative segregation in the compressed mushy core of the ingot. According to numerical sensitivity tests of different punching parameters, as the punching start time and punching velocity increase, the effect of punching on macrosegregation will be smaller. It is demonstrated that the single-phase/two-phase integrated model can predict macrosegregation in the steel ingots which are deformed during solidification.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2003
Author(s):  
Chaoshou Yan ◽  
Jianfei Liu ◽  
Shuihua Zheng ◽  
Bin Huang ◽  
Jiacheng Dai

In order to study the wear law of the centrifugal pump flowing surface under different wear-rings clearance, the McLaury wear model was used to conduct the full-passage numerical simulation of solid-liquid two-phase flow in a single-stage single-suction centrifugal pump. The reliability of the numerical calculation method is verified by comparing the experimental data and numerical simulation results. The clearance is 0.1, 0.15, 0.2, 0.3 and 0.5 mm, respectively. The results show that the wear of the centrifugal pump blades is mainly concentrated in the end part and the inlet part of the blade, and the wear of the pressure surface at the end of the suction surface and the front of the blade is more serious. As the clearance increases, the maximum wear value in the impeller increases first and then decreases, reaching a maximum at 0.15 mm. With the increase of the clearance, the wear degree and the wear rate of the volute wall surface first increase and then decrease, and reach the maximum at 0.2 mm. With the increase of the clearance and the concentration of the fluid medium, the wear at the clearance of the centrifugal pump is more serious, and the severe wear area exhibits a point-like circumferential distribution.


Author(s):  
Zhengjing Shen ◽  
Wei Han ◽  
Yiming Zhong ◽  
Bo Luo ◽  
Rennian Li ◽  
...  

Previous work has shown that performance and internal flow characteristics of a centrifugal pump can be significantly improved with grooved volute casing (GVC). However, it has been found that the selection of the design parameters of the groove structure also has a direct impact on the performance output, internal flow pressure pulsation and erosion wear characteristics of the overflow components of centrifugal pump, so it is necessary to further analyze the design rules of the groove structure parameters. In this study, we first investigated the influence of the number of grooves on the head, efficiency and unsteady pressure pulsation characteristics of the internal flow field of the centrifugal pump, and on this basis, the correlation between different particle parameters and the erosion wear of key overflow components under the conditions of solid–liquid two-phase flow were also studied, and the erosion wear characteristics of the inner wall of the volute casing of centrifugal pump with GVC and original volute casing (OVC) structures were compared. This research leads to the conclusion that when the number of grooves is 3, the groove structure has the least influence on the performance of the centrifugal pump, and the overall change of the performance curve is more stable. Additionally, the pressure pulsation at each monitoring point of the GVC under the same flow condition is smaller, and when the number of grooves increases, the pressure pulsation amplitude also decreases. When the number of grooves is 3, the GVC shows a more significant flow improvement effect under all flow conditions. Based on the improvement of the groove structure on the flow stability, the particle motion behavior can be affected at the same time, so that the pump with GVC can mitigate the erosion wear of the inner wall of the volute casing under the solid–liquid two-phase flow conditions, which improves the critical performance and service life of the key overflow components of the pump.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 65 ◽  
Author(s):  
Qiaorui Si ◽  
Gérard Bois ◽  
Minquan Liao ◽  
Haoyang Zhang ◽  
Qianglei Cui ◽  
...  

Capability for handling entrained gas is an important design consideration for centrifugal pumps used in petroleum, chemistry, nuclear applications. An experimental evaluation on their two phase performance is presented for two centrifugal pumps working under air-water mixture fluid conditions. The geometries of the two pumps are designed for the same flow rate and shut off head coefficient with the same impeller rotational speed. Overal pump performance and unsteady pressure pulsation information are obtained at different rotational speeds combined with various inlet air void fractions (α0) up to pump stop condition. As seen from the test results, pump 2 is able to deliver up to 10% two-phase mixtures before pump shut-off, whereas pump 1 is limited to 8%. In order to understand the physics of this flow phenomenon, a full three-dimensional unsteady Reynolds Average Navier-Stokes (3D-URANS) calculation using the Euler–Euler inhomogeneous method are carried out to study the two phase flow characteristics of the model pump after corresponding experimental verification. The internal flow characteristics inside the impeller and volute are physically described using the obtained air distribution, velocity streamline, vortex pattern and pressure pulsation results under different flow rates and inlet void fractions. Pump performances would deteriorate during pumping two-phase mixture fluid compared with single flow conditions due to the phase separating effect. Some physical explanation about performance improvements on handing maximum acceptable inlet two phase void fractions capability of centrifugal pumps are given.


Author(s):  
Z. Mansoori ◽  
M. Saffar-Avval ◽  
B. Nojabaii ◽  
F. Behzad ◽  
G. Ahmadi

Two-dimensional simulation of turbulent solid-liquid flow is carried out. The modeling is established for a two-phase flow of solid particles in a vertical pipe water flow. Governing equations of flow and turbulence field are solved in an Eulerian-Lagrangian approach by the use of k-τ (turbulence time scale) model and trajectories of the particles are obtained using the Lagrangian method with a deterministic inter-particle collision model. Comparison between the results of the model for mean and r.m.s velocities of the liquid and solid phase with the experimental results shows a good agreement. The effect of variation of particle density and concentration are studied.


2012 ◽  
Vol 212-213 ◽  
pp. 1237-1243
Author(s):  
Hong Hua ◽  
Xiao Bing Liu ◽  
Shun Bing Ou ◽  
Yong Zhong Zeng

With the use of the RNG k-ε turbulence model and the SIMPLEC algorithm, as well as after the secondary development of the software Fluent, the velocity field and pressure field of a axial flow impeller were numerically simulated in the single-phase (clear water) and the solid-liquid two-phase conditions. The distributions of pressure, velocity and solid concentration in the impeller under the single-phase flow and the solid-liquid two-phase flow conditions were compared. This study has shown that the numerical simulation results are the same as the actual situation.


2020 ◽  
pp. 2150062
Author(s):  
Yong Wang ◽  
Jie Chen ◽  
Lei Xie ◽  
Hou-Lin Liu ◽  
Kai-Kai Luo

The objective of this paper is to apply combined experimental and computational modeling to investigate the influence of different coating thickness on the operation characteristics of solid–liquid two-phase flow centrifugal pump. According to the characteristics of sediment flow in the Yellow River Basin, the effects of polyurethane coating thickness on the energy performance and pressure fluctuation are analyzed under the condition of solid–liquid two-phase flow and clean water. Meanwhile, the internal flow characteristics and radial force of the coated pump under the condition of solid–liquid two-phase flow are studied. The results show that the blade inlet and outlet of impeller are easy to wear, and the pressure fluctuation at the outlet of the model pump can be reduced by spraying proper coating thickness. The model pump with coating increases the low-speed zone of internal flow, which is mainly due to the increase of the viscous bottom layer area. The variation amplitude of radial force in sediment-laden water decreases with the increase of coating thickness.


Sign in / Sign up

Export Citation Format

Share Document