scholarly journals Evaluation of the Effect of Silica Fume on Amorphous Fly Ash Geopolymers Exposed to Elevated Temperature

2021 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Ong Huey Li ◽  
Liew Yun-Ming ◽  
Heah Cheng-Yong ◽  
Ridho Bayuaji ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

The properties of amorphous geopolymer with silica fume addition after heat treatment was rarely reported in the geopolymer field. Geopolymer was prepared by mixing fly ash and alkali activator. The silica fume was added in 2% and 4% by weight. The geopolymer samples were cured at room temperature for 28 days before exposed to an elevated temperature up to 1000 °C. The incorporation of 2% silica fume did not cause significant improvement in the compressive strength of unexposed geopolymer. Higher silica fume content of 4% reduced the compressive strength of the unexposed geopolymer. When subjected to elevated temperature, geopolymer with 2% silica fume retained higher compressive strength at 1000 °C. The addition of silica fume in fly ash geopolymer caused a lower degree of shrinkage and expansion, as compared to geopolymer without the addition of silica fume. Crystalline phases of albite and magnetite were formed in the geopolymer at 1000 °C.

2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


2019 ◽  
Vol 2 (1) ◽  
pp. 50
Author(s):  
Andrie Harmaji ◽  
Claudia Claudia ◽  
Lia Asri ◽  
Bambang Sunendar ◽  
Ahmad Nuruddin

Abstract:. Suralaya power plant produces fly ash about 219.000 ton per year. Fly ash contents of silica and alumina as major components that can be used as precursors for geopolymer, a three dimensional networks aluminosilicate polymers. This research aim is to utilize fly ash for geopolymer made by mixing fly ash, fine aggregate, and alkali activator in a cubic mould and curing was carried out at room temperature for 7 and 28 days. After 28 days of curing the compressive strength of geopolymer reached 41.70 MPa. XRD characterization shows Albite (NaAlSi3O8) formation which has similarity to geopolymer compound. Fourier Transform Infra Red spectra show siloxo and sialate bond. These are typical functional groups that are found in geopolymer materials.Keyword: geopolymer, fly ash, aluminosilicate, alkali activator, albite, siloxo, sialateAbstrak: Pembangkit Listrik Tenaga Uap (PLTU) Suralaya menghasilkan fly ash (abu terbang) sekitar 219.000 ton per tahun. Fly ash memiliki silika dan alumina sebagai komponen utama yang dapat digunakan sebagai prekursor untuk geopolimer, suatu material polimer aluminosilikat tiga dimensi. Penelitian ini bertujuan untuk memanfaatkan fly ash untuk geopolimer yang dibuat dengan mencampur fly ash, agregat halus, dan aktivator alkali dalam cetakan kubik dan pengawetan dilakukan pada suhu kamar selama 7 dan 28 hari. Setelah 28 hari curing kekuatan tekan geopolimer mencapai 41,70 MPa. Karakterisasi XRD menunjukkan pembentukan Albite (NaAlSi3O8) yang memiliki kemiripan dengan senyawa geopolimer. Hasil spektroskopi Fourier Transform Infra Red (FTIR) menunjukkan ikatan siloxo dan sialate yang merupakan gugus fungsional khas yang ditemukan dalam geopolimer.Kata Kunci: geopolimer, abu terbang, aluminosilikat, alkali aktivator, albite, siloxo, sialate


2018 ◽  
Vol 195 ◽  
pp. 01023 ◽  
Author(s):  
Ari Widayanti ◽  
Ria Asih Aryani Soemitro ◽  
Hitapriya Suprayitno ◽  
Januarti Jaya Ekaputri

Fly ash is a by-product obtained from coal combustion process. Some of the utilization of fly ash is to produce geopolymer products which have high compressive strength, fire, chemical resistance. This paper proposes fly ash from unit 1-7 Suralaya Power Plant Indonesia. The aims of this study are to obtain characterization of fly ash and mechanical properties of geopolymer paste based on variations of the alkali activator ratio. The method was based on previous research and laboratory investigation. XRF and compressive strength were analysed in this study. Alkali activator was obtained from NaOH and Na2SiO3 mixture. The ratio of Na2SiO3 to NaOH was in the range of 0.5-2.5. Geopolymer paste was casted in acrylic cylinders with a diameter of 2 cm and a height of 4 cm. The curing was conducted at room temperature until the day for the compressive strength test at 28 days. The result showed that the fly ash is classified as F class. Increasing the alkali activator ratio influenced the strength. The best composition of geopolymer paste is made with NaOH 8M, and the mass ratio of Na2SiO3 to NaOH is 2.5. This composition produced compressive strength of 98.6 MPa.


2013 ◽  
Vol 684 ◽  
pp. 172-176
Author(s):  
Alireza Ghaffari ◽  
Amirreza Ghaffari

To enhance the mechanical and compressive strength of lime mortar(lime-sand ) the fly ash was added to the compound to improved the engineering performance of lime mixture .The addition of fly ash and lime stone dust to clay soils reduce their plasticity characteristics, swell potential and improve their compressive strength (Brooks et al. 2011) .Boardman et al (2001) observed that no significant pozzolonic activity appears to take place until 7 days of curing during their experiments at room temperature .In this research the effect of fly ash at different range from 30 to 70 percent of mix by varying lime percentage from 6 to 20 percent with thermodynamic parameters of their reaction was assessed in normal and raised temperature by curing compacted specimens in the laboratory .The compressive strength of fly ash and lime mixture are determined on curing period up to 28 days in normal state and one days on raised one .The Result portrayed that raised temperature highly boosted the compressive strength of the mix from 30 to 120 percent at different range of fly ash mixture with lime.


2014 ◽  
Vol 699 ◽  
pp. 15-19 ◽  
Author(s):  
Rosniza Hanim Abdul Rahim ◽  
Khairun Azizi Azizli ◽  
Zakaria Man ◽  
Muhd Fadhil Nuruddin

Geopolymer is associated with the alkali activation of materials rich in Si and Al, and alkali activator such as sodium hydroxide is used for the dissolution of raw material with the addition of sodium silicate solution to increase the dissolution process. However, the trend of strength development of geopolymer using sodium hydroxide alone is not well established. This paper presents an evaluation on compressive strength of fly ash–based geopolymer by varying curing time with respect to different curing temperature using sodium hydroxide as the only activator. The samples were cured at room temperature and at an elevated temperature (60°C). Further analysis on the microstructure of geopolymer products cured at 60°C was carried out using Field Emission Scanning Microscopy (FESEM). It can be observed that the compressive strength increased as the curing time increased when cured at room temperature; whereas at elevated temperature, the strength increased up to a maximum 65.28 MPa at 14 days but gradually decreased at longer curing time. Better compressive strength can be obtained when the geopolymer was cured at an elevated temperature compared to curing at room temperature.


2014 ◽  
Vol 1015 ◽  
pp. 56-59
Author(s):  
Jin Qiang Liu ◽  
Bin Hao ◽  
Jian Yuan Yu ◽  
Yun Jie Xu

The cement-free binding material, namely geopolymer, is a novel binding material made from solid waste such as fly ash and slag activated by the alkali. In this research, orthogonal tests were carried out on 20 x 20 x 20mm cube paste specimens cured at room temperature to explore the rules of influence factors according to the compressive strength for 3d, 7d and 28d. The results revealed that the ratio of fly ash/slag is the most significant factor, the ratio of water/ (fly ash+ slag), the modulus of alkali activator and the dosage of desulfurized gypsum also play great role in strength development of the binder. The compressive strength of the specimens can be obtained to 65.0 MPa and 51.21MPa at maximum for 28d when the ratios of fly ash/slag are 30/70 and 40/60 respectively.


2018 ◽  
Vol 281 ◽  
pp. 175-181
Author(s):  
Hui Teng Ng ◽  
Cheng Yong Heah ◽  
Yun Ming Liew ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin

In the present work, a comparative study of the thermal performance of unfoamed and foamed geopolymers was investigated. The geopolymers were prepared by mixing fly ash with alkali activator (a mixture of sodium hydroxide and sodium silicate). The geopolymer foams were prepared by adding hydrogen peroxide (H2O2, 2wt.% and 4wt.%). The geopolymers were cured at room temperature (29°C) for 24 hours and at 60°C for another 24 hours. The bulk density and compressive strength decreased with increasing H2O2 up to 2wt.% and increased when 4wt.% of H2O2 was added. In order to test the thermal resistance, the geopolymers were heated at elevated temperature (200- 1000°C). Unheated geopolymers showed bulk density and compressive strength in the range of 1.6– 1.7g/cm3 and 15–17MPa, respectively. When heated up to 1000°C, the geopolymers could withstand high temperature without any disintegration and spalling. Both unfoamed and foamed geopolymers showed highest compressive strength at 200°C (17–22MPa). Further decreased in compressive strength was observed upon heating up to 800°C (10–17MPa). The compressive strength regained (14–21MPa) when heated up to 1000°C. The compressive strength was even higher than that recorded at room temperature. In the present work, unfoamed geopolymers showed overall higher thermal resistance than foamed geopolymers.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

2017 ◽  
Vol 865 ◽  
pp. 282-288 ◽  
Author(s):  
Jul Endawati ◽  
Rochaeti ◽  
R. Utami

In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.


Sign in / Sign up

Export Citation Format

Share Document