scholarly journals Empirical and Numerical Analysis of an Opaque Ventilated Facade with Windows Openings under Mediterranean Climate Conditions

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 163
Author(s):  
Carlos-Antonio Domínguez-Torres ◽  
Ángel Luis León-Rodríguez ◽  
Rafael Suárez ◽  
Antonio Domínguez-Delgado

In recent years, there has been growing concern regarding energy efficiency in the building sector with energy requirements increasing worldwide and now responsible for about 40% of final energy consumption in Europe. Previous research has shown that ventilated façades help to reduce energy use when cooling buildings in hot and temperate climates. Of the different ventilated façade configurations reported in the literature, the configuration of ventilated façade with window rarely has been studied, and its 3D thermodynamic behavior is deserving of further analysis and modeling. This paper examines the thermal behavior of an opaque ventilated façade with a window, in experimentally and numerical terms and its impact in energy savings to get indoor comfort. Field measurements were conducted during the winter, spring and summer seasons of 2021 using outdoor full scale test cells located in Seville (southern Spain). The modeling of the ventilated façade was carried out using a three-dimensional approach taking into account the 3D behavior of the air flow in the air cavity due to the presence of the window. The validation and comparison process using experimental data showed that the proposed model provided good results from quantitative and qualitative point of view. The reduction of the heat flux was assessed by comparing the energy performance of a ventilated façade with that of an unventilated façade. Both experimental and numerical results showed that the ventilated façade provided a reduction in annual total energy consumption when compared to the unventilated façade, being compensated the winter energy penalization by the summer energy savings. This reduction is about 21% for the whole typical climatic year showing the ability of the opaque ventilated façade studied to reduce energy consumption to insure indoor comfort, making its suitable for use in retrofitting the energy-obsolete building stock built in Spain in the middle decades of the 20 century.

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2012 ◽  
Author(s):  
Jan Fořt ◽  
Jiří Šál ◽  
Jan Kočí ◽  
Robert Černý

Facing the consequences of climate change and fuel price rises, the achievement of the requirements for low-energy consumption of buildings has become a challenging issue. On top of that, increased demands on indoor hygrothermal conditions usually require the utilization of additional heating, ventilation, and air-conditioning (HVAC) systems to maintain a comfortable environment. On this account, several advanced and modern materials are widely investigated as a promising way for reduction of the buildings’ energy consumption including utilization of passive heating/cooling energy. However, the efficiency and suitability of passive strategies depending on several aspects including the influence of location, exterior climatic conditions, load-bearing materials used, and insulation materials applied. The main objective of this study consists of the investigation of the energy performance benefits gained by the utilization of advanced materials in plasters by computational modeling. Results obtained from a computational simulation reveal the capability of the studied passive cooling/heating methods on the moderation of indoor air quality together with the reduction of the diurnal temperature fluctuation. Achieved results disclose differences in terms of energy savings for even small variation in outdoor climate conditions. Additionally, the effectivity of passive cooling/heating alters considerably during the summer and winter periods. Based on the analysis of simulated heat fluxes, the potential energy savings related to improved thermal properties of the applied plaster layer reached up to 12.08% and thus represent an interesting passive solution towards energy sustainability to meet the criteria on modern buildings.


2021 ◽  
Author(s):  
◽  
Aleksejs Prozuments

Energy efficiency in the building stock is a substantial contributor to infrastructure sustainability. In Latvia, buildings’ thermal energy use for space heating accounts for 80 % of total building energy use in the cold season. Therefore, reducing thermal energy consumption for space heating needs through the implementation of energy efficiency measures, enforcement of local building codes and regulations can ultimately lead to cost savings for building owners and stakeholders. The present PhD Thesis introduces a methodology for evaluation of thermal energy saving potential in the long run across residential, public, and industrial building stock under various thermal energy consumption compliance scenarios. These scenarios were developed based on three different building code protocols with a 10-year forecast analysis. Evaluation of the proposed building code implementation practices and their feasibility in Latvian building stock is discussed for these buildings with regards to their long-term thermal energy savings potential.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Naim Jabbour

Data shows residential energy consumption constituting a significant portion of the overall energy end use in the European Union (EU), ranging between 15% and 30%. Furthermore, the EU’s dependency on foreign fossil fuel-based energy imports has been steadily increasing since 1993, constituting approximately 60% of its primary energy. This paper provides an analytical re-view of diverse residential building/energy policies in targeted EU countries, to shed insight on the impact of such policies and measures on energy use and efficiency trends. Accordingly, the adoption of robust residential green and energy efficient building policies in the EU has increased in the past decade. Moreover, data from EU energy efficiency and consumption databases attributes 44% of total energy savings since 2000 to energy upgrades and improvements within the residential sector. Consequently, many EU countries and organizations are continuously evaluating residential building energy consumption patterns to increase the sec-tor’s overall energy performance. To that end, energy efficiency gains in EU households were measured at 1% in 2000 compared to 27.8% in 2016, a 2600% increase. Accordingly, 36 policies have been implemented successfully since 1991 across the EU targeting improvements in residential energy efficiency and reductions in energy use. Moreover, the adoption of National Energy Efficiency Actions Plans (NEEACP) across the EU have been a major driver of energy savings and energy efficiency. Most energy efficiency plans have followed a holistic multi-dimensional approach targeting the following areas, legislative actions, financial incentives, fiscal tax exemptions, and public education and awareness programs and campaigns. These measures and policy instruments have cumulatively generated significant energy savings and measurable improvements in energy performance across the EU since their inception. As a result, EU residential energy consumption trends show a consistent decrease over the past decade. The purpose of this analysis is to explore, examine, and compare the various green building and energy-related policies in the EU, highlighting some of the more robust and progressive aspects of such policies. The paper will also analyze the multiple policies and guidelines across targeted European nations. Lastly, the study will assess the status of green residential building policies in Lebanon, drawing from the comprehensive European measures, in order to recommend a comprehensive set of guidelines to advance energy policies and building practices in the country. Keywords: Building Policies; Residential Energy Patterns; Residential Energy Consumption; Energy Savings


2021 ◽  
Vol 13 (11) ◽  
pp. 5843
Author(s):  
Mehdi Chihib ◽  
Esther Salmerón-Manzano ◽  
Mimoun Chourak ◽  
Alberto-Jesus Perea-Moreno ◽  
Francisco Manzano-Agugliaro

The COVID-19 pandemic has caused chaos in many sectors and industries. In the energy sector, the demand has fallen drastically during the first quarter of 2020. The University of Almeria campus also declined the energy consumption in 2020, and through this study, we aimed to measure the impact of closing the campus on the energy use of its different facilities. We built our analysis based upon the dataset collected during the year 2020 and previous years; the patterns evolution through time allowed us to better understand the energy performance of each facility during this exceptional year. We rearranged the university buildings into categories, and all the categories reduced their electricity consumption share in comparison with the previous year of 2019. Furthermore, the portfolio of categories presented a wide range of ratios that varied from 56% to 98%, the library category was found to be the most influenced, and the research category was found to be the least influenced. This opened questions like why some facilities were influenced more than others? What can we do to reduce the energy use even more when the facilities are closed? The university buildings presented diverse structures that revealed differences in energy performance, which explained why the impact of such an event (COVID-19 pandemic) is not necessarily relevant to have equivalent variations. Nevertheless, some management deficiencies were detected, and some energy savings measures were proposed to achieve a minimum waste of energy.


2020 ◽  
Vol 10 (20) ◽  
pp. 7123
Author(s):  
Ricardo Abejón ◽  
Jara Laso ◽  
Marta Rodrigo ◽  
Israel Ruiz-Salmón ◽  
Mario Mañana ◽  
...  

Recent studies have identified that buildings all over the world are great contributors to energy consumption and greenhouse gas emissions. The relationship between the building industry and environmental pollution is continuously discussed. The building industry includes many phases: extraction of raw materials, manufacturing, construction, use, and demolition. Each phase consumes a large amount of energy, and subsequent emissions are released. The life cycle energy assessment (LCEA) is a simplified version of the life cycle assessment (LCA) that focuses only on the evaluation of energy inputs for different phases of the life cycle. Operational energy is the energy required for day-to-day operation processes of buildings, such as heating, cooling and ventilation systems, lighting, as well as appliances. This use phase accounts for the largest portion of energy consumption of the life cycle of conventional buildings. In addition, energy performance certification of buildings is an obligation under current European legislation, which promotes efficient energy use, so it is necessary to ensure that the energy performance of the building is upgraded to meet minimum requirements. For this purpose, this work proposes the consideration of the energy impacts and material resources used in the operation phase of a building to calculate the contribution of these energy impacts as new variables for the energy performance certification. The application of this new approach to the evaluation of university buildings has been selected as a case study. From a methodological point of view, the approach relied on the energy consumption records obtained from energy and materials audit exercises with the aid of LCA databases. Taking into practice the proposed methodology, the primary energy impact and the related emissions were assessed to simplify the decision-making process for the energy certification of buildings. From the results obtained, it was concluded that the consumption of water and other consumable items (paper) are important from energy and environmental perspectives.


2019 ◽  
Vol 11 (22) ◽  
pp. 6356 ◽  
Author(s):  
Gangolells ◽  
Casals ◽  
Ferré-Bigorra ◽  
Forcada ◽  
Macarulla ◽  
...  

Buildings play a central role in the clean energy transition, which is why it is vital to understand how energy is consumed in this sector. Energy performance certificate databases are considered a key source of information on the characteristics of built building stock. Despite a growing portfolio of studies based on information from such databases, little is known about energy consumption in offices. This paper explores the modelled energy performance of existing offices in Spain, using data from 13,701 energy performance certificates collected by the Catalan Institute of Energy (ICAEN) in 2013–2018. Offices were found to consume between 202.66 and 212.10 kWhp/m2·year and were mostly ranked in classes C and D (~64%). Offices with E, F or G labels represent ~28% of the sample while A and B energy ratings are very scarce (~8%). Key drivers of energy consumption variation were found to be the office type, construction period, climate zone, renewable energy use, energy certification procedure and motivation for obtaining an energy performance certificate. Ownership was not found to affect average calculated energy consumption. The results will help policy makers to plan future energy conservation strategies.


Author(s):  
Edward J. Naimaster ◽  
Ahmad K. Sleiti

Buildings account for a significant portion of the total energy consumption in the US, especially the energy-inefficient commercial building sector. As part of the future path towards realizing net zero energy buildings, innovative energy-efficient technologies must be developed. In this study, the potential of phase change material (PCM)-enhanced constructions to lower HVAC energy consumption in a commercial building was investigated. A commercially available fatty acid-based PCM product was selected due promising thermal and chemical properties. Differential scanning calorimetry (DSC) was used in isothermal step mode to accurately measure the latent heat energy storage of the PCM. A US DOE commercial reference building model with a PCM-enhanced ceiling was simulated using a finite-difference conduction heat transfer algorithm in EnergyPlus to determine the effects of the PCM on the building energy performance. It was found that, although the PCM-enhanced ceiling had a beneficial stabilizing effect on the interior surface temperature of the ceiling, the zone mean air temperatures were not significantly altered. As such, minimal HVAC energy savings were seen. Future work should focus on the potential of active PCM constructions, which could successfully remove stored thermal energy from the PCM without increasing the space cooling energy consumption.


2018 ◽  
Vol 28 (4) ◽  
pp. 533-551 ◽  
Author(s):  
François Simon ◽  
Javier Ordoñez ◽  
Aymeric Girard ◽  
Cristobal Parrado

To reduce the energy consumption in buildings, there is a demand for tools that identify significant parameters of energy performance. The work presents the development and validation of a simulation model, called MEEDI, and graphical figures for the parametric sensitivity investigation of energy performance in different climates in Chile. The MEEDI is based on the ISO 13790 monthly calculation method of building energy use with two improved procedures for the calculation of the heat transfer through the floor and the solar heat gains. The graphical figures illustrate the effects of climate conditions, envelope components and window size and orientation on the energy consumption. The MEEDI program can contribute to find the best solution to increase energy efficiency in residential buildings. It can be adapted for various parameters, making it useful for future projects. The economic viability of specific measures for building envelope materials was analysed. Payback periods range from 5 to 27 years depending on the location and energy scenario. The study illustrates how building design decisions can have a significant impact on final energy performance. With simple envelope components modification, valuable energy gains and carbon emission reductions can be achieved in a cost-effective manner in Chile.


Author(s):  
Hong Xian Li ◽  
Haitao Yu ◽  
Mustafa Gul ◽  
Mohamed Al-Hussein ◽  
Ahmad Alrifai ◽  
...  

Residential building operations consume a considerable amount of energy, especially in coldclimate regions. The National Energy Board of Canada (NEB) analyzed energy consumption in 2011, and found that energy use in the residential sector, including space heating/cooling, hot water heating, lighting, appliances, and other energy-using devices, accounts for 14% of the total energy consumption nationally. The concept of NetZero-energy homes (NZEHs) has emerged as a solution to reduce the energy demands of residential building operations. Following efforts to develop NZEHs, the actual energy performance of these homes needs to be examined, and sensor technology is capable of measuring this energy consumption in detail. In this research, sensor instrumentation is customized for NZEH projects developed by Landmark Group of Builders in Edmonton, Canada. Data is collected for the first month and following winter months, then the collected data is validated and cleaned and is analyzed in terms of energy consumption, energy generation, and energy balance. Based on the analysis, recommendations for the operation of NZEHs are proposed.


2019 ◽  
Vol 11 (6) ◽  
pp. 1724 ◽  
Author(s):  
Ru Ji ◽  
Shilin Qu

Energy use in hospitals is higher than other public buildings, so it is essential to investigate and evaluate its energy consumption performance to save energy. In this paper, a comprehensive investigation was conducted to study energy consumption of hospitals in China. The investigation results show that electricity use accounts for the maximum share in total energy consumption of hospitals, especially in south China. Improving air conditioning systems is the most direct and effective way for realizing hospital building energy savings. What’s more, a new evaluation system of energy-saving performance for hospital buildings was developed. This evaluation system could evaluate performance of energy use in hospital, find out the weakness of energy use, and provide improving suggestions. Furthermore, a kind of visual software was given by our paper, which can be used intuitively by practitioners to evaluate building energy consumption performance of a hospital.


Sign in / Sign up

Export Citation Format

Share Document