scholarly journals Vibration Signal Processing-Based Detection of Short-Circuited Turns in Transformers: A Nonlinear Mode Decomposition Approach

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 575 ◽  
Author(s):  
Jose R. Huerta-Rosales ◽  
David Granados-Lieberman ◽  
Juan P. Amezquita-Sanchez ◽  
David Camarena-Martinez ◽  
Martin Valtierra-Rodriguez

Transformers are vital and indispensable elements in electrical systems, and therefore, their correct operation is fundamental; despite being robust electrical machines, they are susceptible to present different types of faults during their service life. Although there are different faults, the fault of short-circuited turns (SCTs) has attracted the interest of many researchers around the world since the windings in a transformer are one of the most vulnerable parts. In this regard, several works in literature have analyzed the vibration signals that generate a transformer as a source of information to carry out fault diagnosis; however this analysis is not an easy task since the information associated with the fault is embedded in high level noise. This problem becomes more difficult when low levels of fault severity are considered. In this work, as the main contribution, the nonlinear mode decomposition (NMD) method is investigated as a potential signal processing technique to extract features from vibration signals, and thus, detect SCTs in transformers, even in early stages, i.e., low levels of fault severity. Also, the instantaneous root mean square (RMS) value computed using the Hilbert transform is proposed as a fault indicator, demonstrating to be sensitive to fault severity. Finally, a fuzzy logic system is developed for automatic fault diagnosis. To test the proposal, a modified transformer representing diverse levels of SCTs is used. These levels consist of 0 (healthy condition), 5, 10, 15, 20, and 25 SCTs. Results demonstrate the capability of the proposal to extract features from vibration signals and perform automatic fault diagnosis.

Author(s):  
Félix Leaman ◽  
Cristián Molina Vicuña ◽  
Elisabeth Clausen

Abstract Background The acoustic emission (AE) analysis has been used increasingly for gearbox diagnostics. Since AE signals are of non-linear, non-stationary and broadband nature, traditional signal processing techniques such as envelope spectrum must be carefully applied to avoid a wrong fault diagnosis. One signal processing technique that has been used to enhance the demodulation process for vibration signals is the empirical mode decomposition (EMD). Until now, the combination of both techniques has not yet been used to improve the fault diagnostics in gearboxes using AE signals. Purpose In this research we explore the use of the EMD to improve the demodulation process of AE signals using the Hilbert transform and enhance the representation of a gear fault in the envelope spectrum. Methods AE signals were measured on a planetary gearbox (PG) with a ring gear fault. A comparative signal analysis was conducted for the envelope spectra of the original AE signals and the obtained intrinsic mode functions (IMFs) considering three types of filters: highpass filter in the whole AE range, bandpass filter based on IMF spectra analysis and bandpass filter based on the fast kurtogram. Results It is demonstrated how the results of the envelope spectrum analysis can be improved by the selection of the relevant frequency band of the IMF most affected by the fault. Moreover, not considering a complementary signal processing technique such as the EMD prior the calculation of the envelope of AE signals can lead to a wrong fault diagnosis in gearboxes. Conclusion The EMD has the potential to reveal frequency bands in AE signals that are most affected by a fault and improve the demodulation process of these signals. Further research shall focus on overcome issues of the EMD technique to enhance its application to AE signals.


2019 ◽  
Vol 13 (1) ◽  
pp. 4477-4492
Author(s):  
M. Firdaus Isham ◽  
M. Salman Leong ◽  
L. M. Hee ◽  
Z. A. B. Ahmad

Vibration-based monitoring and diagnosis provide an excellent and reliable monitoring strategies for maintaining and sustaining a million dollars of industrial assets. The signal processing method is one of the key elements in gearbox fault diagnosis for extracting most useful information from raw vibration signals. Variational mode decomposition (VMD) is one of the recent signal processing methods that helps to solve many limitations in traditional signal processing method. However, pre-determine the input parameters especially the mode number become a challenging task for using this method. Then, this study aims to propose an iterative approach for selecting the mode number for the VMD method by using the normalized mean value (NMV) plot. The NMV value is calculates based on the ratio of a summation of VMD modes and the input signals. The result shows that the proposed iterative VMD approach can select an accurate mode number for the VMD method. Then, the vibration signals decomposed into different VMD modes and used for gearbox fault diagnosis. Statistical features have been extracted from the selected VMD modes and pass into extreme learning machine (ELM) for fault classification. Iterative VMD-ELM provide significance improvement of about 20% higher accuracy in classification result as compared with EMD-ELM. Hence, this research study offers a new mean for gearbox diagnosis strategy.  


2005 ◽  
Vol 291-292 ◽  
pp. 655-660 ◽  
Author(s):  
H. Li ◽  
H.Q. Zheng ◽  
L.W. Tang

Time-frequency and transient analysis have been widely used in signal processing and faults diagnosis. These methods represent important characteristics of a signal in both time and frequency domain. In this way, essential features of the signal can be viewed and analyzed in order to understand or model the faults characteristics. Historically, Fourier spectral analyses have provided a general approach for monitoring the global energy/frequency distribution. However, an assumption inherent to this method is the stationary and linear of the signal. As a result, Fourier methods are not generally an appropriate approach in the investigation of faults signals with transient components. This work presents the application of a new signal processing technique, empirical mode decomposition and the Hilbert spectrum, in analysis of vibration signals and gear faults diagnosis for a machine tool. The results show that this method may provide not only an increase in the spectral resolution but also reliability for the gear faults diagnosis.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Xu ◽  
Yan jun Fang ◽  
Dong Wang ◽  
Jia qi Liang ◽  
Kwok Leung Tsui

Because deep belief networks (DBNs) in deep learning have a powerful ability to extract useful information from the raw data without prior knowledge, DBNs are used to extract the useful feature from the roller bearings vibration signals. Unlike classification methods, the clustering method can classify the different fault types without data label. Therefore, a method based on deep belief networks (DBNs) in deep learning (DL) and fuzzy C-means (FCM) clustering algorithm for roller bearings fault diagnosis without a data label is presented in this paper. Firstly, the roller bearings vibration signals are extracted by using DBN, and then principal component analysis (PCA) is used to reduce the dimension of the vibration signal features. Secondly, the first two principal components (PCs) are selected as the input of fuzzy C-means (FCM) for roller bearings fault identification. Finally, the experimental results show that the fault diagnosis of the method presented is better than that of other combination models, such as variation mode decomposition- (VMD-) singular value decomposition- (SVD-) FCM, and ensemble empirical mode decomposition- (EEMD-) fuzzy entropy- (FE-) PCA-FCM.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ravikumar KN ◽  
Hemantha Kumar ◽  
Kumar GN ◽  
Gangadharan KV

PurposeThe purpose of this paper is to study the fault diagnosis of internal combustion (IC) engine gearbox using vibration signals with signal processing and machine learning (ML) techniques.Design/methodology/approachVibration signals from the gearbox are acquired for healthy and induced faulty conditions of the gear. In this study, 50% tooth fault and 100% tooth fault are chosen as gear faults in the driver gear. The acquired signals are processed and analyzed using signal processing and ML techniques.FindingsThe obtained results show that variation in the amplitude of the crankshaft rotational frequency (CRF) and gear mesh frequency (GMF) for different conditions of the gearbox with various load conditions. ML techniques were also employed in developing the fault diagnosis system using statistical features. J48 decision tree provides better classification accuracy about 85.1852% in identifying gearbox conditions.Practical implicationsThe proposed approach can be used effectively for fault diagnosis of IC engine gearbox. Spectrum and continuous wavelet transform (CWT) provide better information about gear fault conditions using time–frequency characteristics.Originality/valueIn this paper, experiments are conducted on real-time running condition of IC engine gearbox while considering combustion. Eddy current dynamometer is attached to output shaft of the engine for applying load. Spectrum, cepstrum, short-time Fourier transform (STFT) and wavelet analysis are performed. Spectrum, cepstrum and CWT provide better information about gear fault conditions using time–frequency characteristics. ML techniques were used in analyzing classification accuracy of the experimental data to detect the gearbox conditions using various classifiers. Hence, these techniques can be used for detection of faults in the IC engine gearbox and other reciprocating/rotating machineries.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jianfeng Zhang ◽  
Mingliang Liu ◽  
Keqi Wang ◽  
Laijun Sun

During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD). Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs). Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM) to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.


Sign in / Sign up

Export Citation Format

Share Document