scholarly journals When Will a Sequence of Points in a Riemannian Submanifold Converge?

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1934
Author(s):  
Tuyen Trung Truong

Let X be a Riemannian manifold and xn a sequence of points in X. Assume that we know a priori some properties of the set A of cluster points of xn. The question is under what conditions that xn will converge. An answer to this question serves to understand the convergence behaviour for iterative algorithms for (constrained) optimisation problems, with many applications such as in Deep Learning. We will explore this question, and show by some examples that having X a submanifold (more generally, a metric subspace) of a good Riemannian manifold (even in infinite dimensions) can greatly help.

Author(s):  
Kenya Yamada ◽  
Takahiro Katagiri ◽  
Hiroyuki Takizawa ◽  
Kazuo Minami ◽  
Mitsuo Yokokawa ◽  
...  

2010 ◽  
Vol 3 (6) ◽  
pp. 1555-1568 ◽  
Author(s):  
B. Mijling ◽  
O. N. E. Tuinder ◽  
R. F. van Oss ◽  
R. J. van der A

Abstract. The Ozone Profile Algorithm (OPERA), developed at KNMI, retrieves the vertical ozone distribution from nadir spectral satellite measurements of back scattered sunlight in the ultraviolet and visible wavelength range. To produce consistent global datasets the algorithm needs to have good global performance, while short computation time facilitates the use of the algorithm in near real time applications. To test the global performance of the algorithm we look at the convergence behaviour as diagnostic tool of the ozone profile retrievals from the GOME instrument (on board ERS-2) for February and October 1998. In this way, we uncover different classes of retrieval problems, related to the South Atlantic Anomaly, low cloud fractions over deserts, desert dust outflow over the ocean, and the intertropical convergence zone. The influence of the first guess and the external input data including the ozone cross-sections and the ozone climatologies on the retrieval performance is also investigated. By using a priori ozone profiles which are selected on the expected total ozone column, retrieval problems due to anomalous ozone distributions (such as in the ozone hole) can be avoided. By applying the algorithm adaptations the convergence statistics improve considerably, not only increasing the number of successful retrievals, but also reducing the average computation time, due to less iteration steps per retrieval. For February 1998, non-convergence was brought down from 10.7% to 2.1%, while the mean number of iteration steps (which dominates the computational time) dropped 26% from 5.11 to 3.79.


2021 ◽  
Author(s):  
Patrice Carbonneau

<p>Semantic image classification as practised in Earth Observation is poorly suited to mapping fluvial landforms which are often composed of multiple landcover types such as water, riparian vegetation and exposed sediment. Deep learning methods developed in the field of computer vision for the purpose of image classification (ie the attribution of a single label to an image such as cat/dog/etc) are in fact more suited to such landform mapping tasks. Notably, Convolutional Neural Networks (CNN) have excelled at the task of labelling images. However, CNN are notorious for requiring very large training sets that are laborious and costly to assemble. Similarity learning is a sub-field of deep learning and is better known for one-shot and few-shot learning methods. These approaches aim to reduce the need for large training sets by using CNN architectures to compare a single, or few, known examples of an instance to a new image and determining if the new image is similar to the provided examples. Similarity learning rests on the concept of image embeddings which are condensed higher-dimension vector representations of an image generated by a CNN. Ideally, and if a CNN is suitably trained, image embeddings will form clusters according to image classes, even if some of these classes were never used in the initial CNN training.</p><p> </p><p>In this paper, we use similarity learning for the purpose of fluvial landform mapping from Sentinel-2 imagery. We use the True Color Image product with a spatial resolution of 10 meters and begin by manually extracting tiles of 128x128 pixels for 4 classes: non-river, meandering reaches, anastomosing reaches and braiding reaches. We use the DenseNet121 CNN topped with a densely connected layer of 8 nodes which will produce embeddings as 8-dimension vectors. We then train this network with only 3 classes (non-river, meandering and anastomosing) using a categorical cross-entropy loss function. Our first result is that when applied to our image tiles, the embeddings produced by the trained CNN deliver 4 clusters. Despite not being used in the network training, the braiding river reach tiles have produced embeddings that form a distinct cluster. We then use this CNN to perform few-shot learning with a Siamese triplet architecture that will classify a new tile based on only 3 examples of each class. Here we find that tiles from the non-river, meandering and anastomising class were classified with F1 scores of 72%, 87% and 84%, respectively. The braiding river tiles were classified to an F1 score of 80%. Whilst these performances are lesser than the 90%+ performances expected from conventional CNN, the prediction of a new class of objects (braiding reaches) with only 3 samples to 80% F1 is unprecedented in river remote sensing. We will conclude the paper by extending the method to mapping fluvial landforms on entire Sentinel-2 tiles and we will show how we can use advanced cluster analyses of image embeddings to identify landform classes in an image without making a priori decisions on the classes that are present in the image.</p>


2021 ◽  
pp. 543-552
Author(s):  
Zhuobin Huang ◽  
Hongmin Cai ◽  
Tingting Dan ◽  
Yi Lin ◽  
Paul Laurienti ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1139 ◽  
Author(s):  
Kai Yang ◽  
Zhitao Huang ◽  
Xiang Wang ◽  
Fenghua Wang

Signal-to-noise ratio (SNR) is a priori information necessary for many signal processing algorithms or techniques. However, there are many problems exsisting in conventional SNR estimation techniques, such as limited application range of modulation types, narrow effective estimation range of signal-to-noise ratio, and poor ability to accommodate non-zero timing offsets and frequency offsets. In this paper, an SNR estimation technique based on deep learning (DL) is proposed, which is a non-data-aid (NDA) technique. Second and forth moment (M2M4) estimator is used as a benchmark, and experimental results show that the performance and robustness of the proposed method are better, and the applied ranges of modulation types is wider. At the same time, the proposed method is not only applicable to the baseband signal and the incoherent signal, but can also estimate the SNR of the intermediate frequency signal.


2015 ◽  
Vol 88 ◽  
pp. 97-106 ◽  
Author(s):  
Peng Zhou ◽  
Xiaojing Gu ◽  
Jie Zhang ◽  
Minrui Fei

2020 ◽  
Vol 59 (12) ◽  
pp. 1971-1985
Author(s):  
Christina Kumler-Bonfanti ◽  
Jebb Stewart ◽  
David Hall ◽  
Mark Govett

AbstractExtracting valuable information from large sets of diverse meteorological data is a time-intensive process. Machine-learning methods can help to improve both speed and accuracy of this process. Specifically, deep-learning image-segmentation models using the U-Net structure perform faster and can identify areas that are missed by more restrictive approaches, such as expert hand-labeling and a priori heuristic methods. This paper discusses four different state-of-the-art U-Net models designed for detection of tropical and extratropical cyclone regions of interest (ROI) from two separate input sources: total precipitable water output from the Global Forecast System (GFS) model and water vapor radiance images from the Geostationary Operational Environmental Satellite (GOES). These models are referred to as International Best Track Archive for Climate Stewardship (IBTrACS)-GFS, Heuristic-GFS, IBTrACS-GOES, and Heuristic-GOES. All four U-Nets are fast information extraction tools and perform with an ROI detection accuracy ranging from 80% to 99%. These are additionally evaluated with the Dice and Tversky intersection-over-union (IoU) metrics, having Dice coefficient scores ranging from 0.51 to 0.76 and Tversky coefficients ranging from 0.56 to 0.74. The extratropical cyclone U-Net model performed 3 times as fast as the comparable heuristic model used to detect the same ROI. The U-Nets were specifically selected for their capabilities in detecting cyclone ROI beyond the scope of the training labels. These machine-learning models identified more ambiguous and active ROI missed by the heuristic model and hand-labeling methods that are commonly used in generating real-time weather alerts, having a potentially direct impact on public safety.


2017 ◽  
Author(s):  
Christoph Sommer ◽  
Rudolf Hoefler ◽  
Matthias Samwer ◽  
Daniel W. Gerlich

AbstractSupervised machine learning is a powerful and widely used method to analyze high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classifier training. We provide a solution to these limitations with CellCognition Explorer, a generic novelty detection and deep learning framework. Application to several large-scale screening data sets on nuclear and mitotic cell morphologies demonstrates that CellCognition Explorer enables discovery of rare phenotypes without user training, which has broad implications for improved assay development in high-content screening.


2019 ◽  
Author(s):  
Raghav Shroff ◽  
Austin W. Cole ◽  
Barrett R. Morrow ◽  
Daniel J. Diaz ◽  
Isaac Donnell ◽  
...  

AbstractWhile deep learning methods exist to guide protein optimization, examples of novel proteins generated with these techniques require a priori mutational data. Here we report a 3D convolutional neural network that associates amino acids with neighboring chemical microenvironments at state-of-the-art accuracy. This algorithm enables identification of novel gain-of-function mutations, and subsequent experiments confirm substantive phenotypic improvements in stability-associated phenotypes in vivo across three diverse proteins.


2021 ◽  
Vol 14 (6) ◽  
pp. 1689
Author(s):  
F.N.U. Rahul ◽  
Anirban Dutta ◽  
Aseem Subedi ◽  
Basiel Makled ◽  
Jack Norfleet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document