scholarly journals Forced Convection of Non-Newtonian Nanofluid Flow over a Backward Facing Step with Simultaneous Effects of Using Double Rotating Cylinders and Inclined Magnetic Field

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3002
Author(s):  
Lioua Kolsi ◽  
Fatih Selimefendigil ◽  
Lotfi Ben Said ◽  
Abdelhakim Mesloub ◽  
Faisal Alresheedi

The forced convection of non-Newtonian nanofluid for a backward-facing flow system was analyzed under the combined use of magnetic field and double rotating cylinders by using finite element method. The power law nanofluid type was used with different solid volume fractions of alumina at 20 nm in diameter. The effects of the Re number (100≤Re≤300), rotational Re number (−2500≤Rew≤3000), Ha number (0≤Ha≤50), and magnetic field inclination (0≤γ≤90) on the convective heat transfer and flow features were numerically assessed. The non-Newtonian fluid power law index was taken between 0.8 and 1.2 while particle volume fractions up to 4% were considered. The presence of the rotating double cylinders made the flow field complicated where multiple recirculation regions were established near the step region. The impacts of the first (closer to the step) and second cylinders on the heat transfer behavior were different depending upon the direction of rotation. As the first cylinder rotated in the clockwise direction, the enhancement in the average heat transfer of 20% was achieved while it deteriorated by approximately 2% for counter-clockwise directional rotation. However, for the second cylinder, both the rotational direction resulted in heat transfer augmentation while the amounts were 14% and 18% at the highest speeds. Large vortices on the upper and lower channel walls behind the step were suppressed with magnetic field effects. The average Nu number generally increased with the higher strengths of the magnetic field and inclination. Up to 30% increment with strength was obtained while this amount was 44% with vertical orientation. Significant impacts of power law fluid index on the local and average Nu number were seen for an index of n = 1.2 as compared to the fluid with n = 0.8 and n = 1 while an average Nu number of 2.75 times was obtained for the flow system for fluid with n = 1.2 as compared to case for fluid with the n value of 0.8. Further improvements in the local and average heat transfer were achieved with using nanoparticles while at the highest particle amount, the enhancements of the average Nu number were 34%, 36% and 36.6% for the fluid with n values of 0.8, 1 and 1.2, respectively.

Author(s):  
K. Jafarpur ◽  
M. H. Nowzari ◽  
S. M. H. Jayhooni ◽  
A. Abbasi Baharanchi

In the present article, forced convection heat transfer of steady flows pass over staggered square cylinders has been studied numerically. In the tested cases, the passing fluids are nanofluid which has water as base fluid, containing CuO as nanoparticles with different volume fractions. Besides, the flow is laminar and all cylinders are square with constant wall temperature. Recent correlations are used for viscosity and thermal conductivity of nanofluids which are functions of temperature and particle volumetric concentration. Numerical simulations have been performed for low Peclet numbers(Pe ≤ 200), since in this range the flow is steady and laminar. Four different configurations of square cylinders have been studied and the results are compared with each other. This is to investigate the effect of different staggered configurations on forced convection heat transfer inside CuO/Water nanofluids. Finally, a model which has the configuration for the highest heat transfer enhancement inside CuO/Water nanofluids with different particle volume fractions has been specified.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


2021 ◽  
Author(s):  
Hasib Ahmed Prince ◽  
Didarul Ahasan Redwan ◽  
Enamul Hasan Rozin ◽  
Sudipta Saha ◽  
Mohammad Arif Hasan Mamun

Abstract In this study, a numerical investigation on mixed convection inside a trapezoidal cavity with a pair of rotating cylinders has been conducted. Three different power-law fluid indexes (n = 1.4, 1.0, and 0.6) have been considered to model different sets of non-Newtonian fluids. Four separate cases are considered dependent on the rotation orientation of the cylinders within the cavity. In the first two cases, the cylinders rotate in the same direction, i.e., both counter-clockwise (CCW), and both clockwise (CW), whereas, in the other two cases, cylinders rotate in opposite directions (CW-CCW and CCW-CW). Simulations have been carried out over a broad range of Reynolds number (from 0.5 to 500) and angular speeds (a dimensionless value from 0 to 10). The average Nusselt number values at the isothermal hot inclined cavity surface are determined to evaluate heat transfer performance in various circumstances. Streamlines and isotherm contours are also plotted for better understandings of the effects of different cases for various parameters on thermal and fluid flow fields. It is found that the Nusselt number varies non-linearly with different angular speeds of the cylinders. The combined effect of the mixing induced by cylinder rotation and viscosity characteristics of the fluid dictates the heat transfer in the system. Predictions from the numerical investigation provide insights onto the sets of key parametric configuration that have dominant influence on the thermal performance of lid driven cavity with double rotating cylinders.


2014 ◽  
Vol 348 ◽  
pp. 139-146 ◽  
Author(s):  
Ashkan Sehat ◽  
Hani Sadrhosseini ◽  
M. Behshad Shafii

This work presents an experimental study of the effect of a magnetic field on laminar forced convection of a ferrofluid flowing in a tube filled with permeable material. The walls of the tube are subjected to a uniform heat flux and the permeable bed consists of uniform spheres of 3-mm diameter. The ferrofluid synthesis is based on reacting iron (II) and iron (III) in an aqueous ammonia solution to form magnetite, Fe3O4. The magnetite is mixed with aqueous tetra methyl ammonium hydroxide, (CH3)4NOH, solution. The dependency of the pressure drop on the volume fraction, and comparison of the pressure drop and the temperature distribution of the tube wall is studied. Also comparison of the wall temperature distribution, convection heat transfer coefficient and the Nusselt numbers of ferrofluids with different volume fractions is investigated for various Reynolds numbers (147 < Re < 205 ). It is observed that the heat transfer is enhanced by using a porous media, increasing the volume fraction had a similar effect. The pressure coefficient decreases for higher Reynolds number. The effect of magnetic field in four strategies, named modes, on ferrofluid flow through the porous media is presented.


Author(s):  
Ali Mohammad Asadian ◽  
Omid Abouali ◽  
Mahmoud Yaghoubi ◽  
Goodarz Ahmadi

The present paper is concerned with the study of flow and heat transfer characteristics in the steady state free convective flow of Al2O3-waternanofluids in a square enclosure in the presence of magnetic field. Attention is given to the temperature variation of the electrical conductivity and its effect on the electromagnetic force induced by the motion of the nanofluid. A new experimental correlation recently presented in the literature was used for this aim. In all the earlier studies in this area the electrical conductivity variation of nanofluid with temperature was neglected. The fluid viscosity and thermal conductivity are assumed to vary as a function of temperature and this variation is modeled using the available experimental correlations. The governing differential equations are solved numerically using finite element method. The features of fluid flow and heat transfer characteristics are analyzed for various strengths of the magnetic field and different nanoparticle volume fractions. The results show that when the inclusion of the variation of the electrical conductivity with temperature in the numerical model noticeably affects the natural convection heat transfer in the studied rectangular cavity. The variations of Nusselt number for natural convection of Al2O3-water nanofluid with nanoparticle volume fractions are presented at various Rayleigh and Hartmann numbers.


Sign in / Sign up

Export Citation Format

Share Document