scholarly journals Exact Two-Dimensional Analytical Calculations for Magnetic Field, Electromagnetic Torque, UMF, Back-EMF, and Inductance of Outer Rotor Surface Inset Permanent Magnet Machines

2019 ◽  
Vol 24 (1) ◽  
pp. 24 ◽  
Author(s):  
AmirAbbas Vahaj ◽  
Akbar Rahideh ◽  
Hossein Moayed-Jahromi ◽  
AliReza Ghaffari

This paper presents a two-dimensional analytical model of outer rotor permanent magnet machines equipped with surface inset permanent magnets. To obtain the analytical model, the whole model is divided into the sub-domains, according to the magnetic properties and geometries. Maxwell equations in each sub-domain are expressed and analytically solved. By using the boundary/interface conditions between adjacent sub-regions, integral coefficients in the general solutions are obtained. At the end, the analytically calculated results of the air-gap magnetic flux density, electromagnetic torque, unbalanced magnetic force (UMF), back-electromotive force (EMF) and inductances are verified by comparing them with those obtained from finite element method (FEM). One of the merits of this method in comparison with the numerical model is the capability of rapid calculation with the highest precision, which made it suitable for optimization problems.

2019 ◽  
Vol 11 (2) ◽  
pp. 97-105
Author(s):  
A. Ghaffari

This paper estimates the magnetic flux density components in the slotless single-sided axial flux permanent-magnet synchronous machines (SAFPMSMs). For this purpose, a 2-D analytical model based on the sub-domain method is utilized in which the cross-section of the presented machine is divided into the seven sub-regions such as stator side exterior, stator, winding, air-gap, permanent-magnets (PMs), mover and mover side exterior. Based on the Maxwell equations, the related partial differential equations (PDEs) of magnetic flux density components are formed in each sub-region which are identified as the essential step for obtaining the machines quantities. According to the superposition theorem, two separate steps are implemented for calculating the magnetic flux density components. In the first step, open circuit analysis includes various type of magnetization patterns, i.e. parallel, ideal Halbach, 2-segment Halbach and bar magnet in shifting direction is investigated and armature currents are zero and in the second step PMs are inactive and the magnetic flux density components are originated due to only armature reaction. Eventually, 2-D finite element method (FEM) is determined to confirm the accuracy of the presented analytical approach and an acceptable agreement between the analytical and FEM models can be observed.


2017 ◽  
Vol 6 (1) ◽  
pp. 34-46 ◽  
Author(s):  
Kesavan Ramakrishnan ◽  
Pietro Romanazzi ◽  
Damir Zarko ◽  
Giampiero Mastinu ◽  
David A. Howey ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Author(s):  
Uldis Brakanskis ◽  
Janis Dirba ◽  
Ludmila Kukjane ◽  
Viesturs Drava

Analysis of a Permanent-Magnet Brushless DC Motor with Fixed DimensionsThe purpose of this paper is to describe the analysis of a permanent-magnet brushless DC motor with fixed outer diameter and active zone length. The influence of air gap, material of permanent magnets and their size on the magnetic flux density of the machine and magnetic flux is analyzed. The work presents the calculations of two programs, the comparison of the results and the most suitable combination of factors that has been found.


1970 ◽  
Vol 110 (4) ◽  
pp. 25-29 ◽  
Author(s):  
C. Akuner ◽  
E. Huner

In this study, the axial flux permanent magnet motor and the length range of the air gap between rotors was analyzed and the appropriate length obtained. NdFeB permanent magnets were used in this study. Permanent magnets can change the characteristics of the motor's torque. However, the distance between permanent magnets and the air gap will remain constant for each magnet. The impact of different magnet angles for the axial flux permanent magnet motor and other motor parameters was examined. To this aim, the different angles and torque values of the magnetic flux density were calculated using the finite element method of analysis with the help of Maxwell 3D software. Maximum torque was obtained with magnet angles of 21°, 26°, 31.4°, and 34.4°. Additionally, an important parameter for the axial flux permanent magnet motor in terms of the air gap flux was analyzed. Minimum flux change was obtained with a magnet angle of 26°. The magnetic flux of the magnet-to-air-gap is under 0.5 tesla. Given the height of the coil, the magnet-to-air-gap distance most suitable for the axial flux permanent magnet motor was 4 mm. Ill. 11, bibl. 4, tabl. 2 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.280


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3887
Author(s):  
Jeong ◽  
Lee ◽  
Hur

This paper presents a mitigation method of slot harmonic cogging torque considering unevenly magnetized magnets in a permanent magnet synchronous motor. In previous studies, it has been confirmed that non-uniformly magnetized permanent magnets cause an unexpected increase of cogging torque because of additional slot harmonic components. However, these studies did not offer a countermeasure against it. First, in this study, the relationship between the residual magnetic flux density of the permanent magnet and the cogging torque is derived from the basic form of the Maxwell stress tensor equation. Second, the principle of the slot harmonic cogging torque generation is explained qualitatively, and the mitigation method of the slot harmonic component is proposed. Finally, the proposed method is verified with the finite element analysis and experimental results.


2018 ◽  
Vol 152 ◽  
pp. 03004
Author(s):  
Mohd Izzat Bin Zainuddin ◽  
CV Aravind

Electric bike in urban countries such as Europe and China commonly used the brushless direct current machine (BLDC) as it able to produce high torque to transport the user from one place to another. However, BLDC torque density can’t be improving due to limitation magnetic flux generated by the permanent magnet. Therefore, the performance of electric bike can’t be improved. Outer rotor BLDC machine design able to improve the torque density of the motor due to increase radius of the motor which can be explained by simple physics equation (Torque = Force x radius). However, an outer rotor machine only generates constant speed, which is not suitable for operating under tractive load condition, especially electric bike. The proposed model is a new novel of double layer outer rotor BLDCPM machine which able to amplify the magnetic flux density and improve the torque density of the machine. The mutual magnetic coupling between the inner and outer rotor of the proposed model increase the magnetic flux intensity as both of them acts as individual parts. Thus, the magnetic flux generated by both rotors are double which resulted in improving the performance of the E-bike. Designing parameters and analysing the performance of the proposed 2D model is done using FEA tools. Evaluation of the conventional and proposed model by comparing torque performance, magnetic flux density and motor constant square density. Other than that, speed torque graph also is evaluated to justify either it can operate similarly to ICE engine with gears. Two model is designed which is Single Outer Rotor Brushless Direct Current (SORBLDC) and Double Outer Rotor Brushless Direct Current (DORBLDC) operated with the same cases of 27 Amp current supplied to it and operate under various speed from 500 rpm to 2000 rpm. The average torque produce by the conventional and proposed model are 2.045439 Nm and 3.102648 Nm. Furthermore, improvement of the proposed model to conventional model in terms of motor constant square density by 24.92%. Therefore, the proposed model able to improve the magnetic flux by amplifying which resulted to increase the torque density of the machine. Furthermore, the speed-torque graph of the proposed machine shows similarity with speed torque graph of ICE engine. Thus, the proposed machine is suitable to operate for bike application


Sign in / Sign up

Export Citation Format

Share Document