scholarly journals The Remarkable Antioxidant and Anti-Inflammatory Potential of the Extracts of the Brown Alga Cystoseira amentacea var. stricta

Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 2
Author(s):  
Gina De La Fuente ◽  
Marco Fontana ◽  
Valentina Asnaghi ◽  
Mariachiara Chiantore ◽  
Serena Mirata ◽  
...  

Inflammation and oxidative stress are part of the complex biological responses of body tissues to harmful stimuli. In recent years, due to the increased understanding that oxidative stress is implicated in several diseases, pharmaceutical industries have invested in the research and development of new antioxidant compounds, especially from marine environment sources. Marine seaweeds have shown the presence of many bioactive secondary metabolites, with great potentialities from both the nutraceutical and the biomedical point of view. In this study, 50%-ethanolic and DMSO extracts from the species C. amentacea var. stricta were obtained for the first time from seaweeds collected in the Ligurian Sea (north-western Mediterranean). The bioactive properties of these extracts were then investigated, in terms of quantification of specific antioxidant activities by relevant ROS scavenging spectrophotometric tests, and of anti-inflammatory properties in LPS-stimulated macrophages by evaluation of inhibition of inflammatory cytokines and mediators. The data obtained in this study demonstrate a strong anti-inflammatory effect of both C. amentacea extracts (DMSO and ethanolic). The extracts showed a very low grade of toxicity on RAW 264.7 macrophages and L929 fibroblasts and a plethora of antioxidant and anti-inflammatory effects that were for the first time thoroughly investigated. The two extracts were able to scavenge OH and NO radicals (OH EC50 between 392 and 454 μg/mL; NO EC50 between 546 and 1293 μg/mL), to partially rescue H2O2-induced RAW 264.7 macrophages cell death, to abate intracellular ROS production in H2O2-stimulated macrophages and fibroblasts and to strongly inhibit LPS-induced inflammatory mediators, such as NO production and IL-1α, IL-6, cyclooxygenase-2 and inducible NO synthase gene expression in RAW 264.7 macrophages. These results pave the way, for the future use of C. amentacea metabolites, as an example, as antioxidant food additives in antiaging formulations as well as in cosmetic lenitive lotions for inflamed and/or damaged skin.

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.


2017 ◽  
Vol 11 (12) ◽  
pp. 239-252 ◽  
Author(s):  
B. Iloki Assanga Simon ◽  
M. Lewis Luján Lidianys ◽  
A. Gil-Salido Armida ◽  
L. Lara Espinoza Claudia ◽  
Fernandez Angulo Daniela ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Raymond T. Makola ◽  
Vusi G. Mbazima ◽  
Matlou P. Mokgotho ◽  
Vincent S. Gallicchio ◽  
Thabe M. Matsebatlela

Lithium remains the preferred Food and Drug Administration- (FDA-) approved psychiatric drug for treatment of bipolar disorders since its medical establishment more than half a century ago. Recent studies revealed a promising role for lithium in the regulation of inflammation, oxidative stress, and neurodegeneration albeit unclear about its exact mode of action. Thus, the intention of this study is to delineate the regulatory mechanisms of lithium on oxidative stress in lipopolysaccharide- (LPS-) activated macrophages by evaluating its effects on nuclear factor-κB (NF-κB) activity and mRNA expression of multiple oxidative stress-related NF-κB genes. Raw 264.7 macrophages were treated with up to 10 mM lithium, and no change in cell proliferation, viability, growth, and cell adhesion was observed in real time. Pretreatment with low doses of lithium was shown to reduce nitric oxide (NO) production in LPS-activated macrophages. A reduced internal H2DCFDA fluorescence intensity, indicative of reduced reactive oxygen species (ROS) production, was observed in LPS-activated Raw 264.7 macrophages treated with lithium. Lithium has been shown to lower the production of the chemokine RANTES; furthermore, this inhibitory action of lithium has been suggested to be independent of glycogen synthase kinase-3 β (GSK3β) activity. It is shown here that lithium modulates the expression of several inflammatory genes including IκB-α, TRAF3, Tollip, and NF-κB1/p50 which are regulators of the NF-κB pathway. Moreover, lithium inhibits NF-κB activity by lowering nuclear translocation of NF-κB in LPS-activated macrophages. This is the first study to associate Tollip, Traf-3, and IκB-α mRNA expression with lithium effect on NF-κB activity in LPS-activated Raw 264.7 macrophages. Although these effects were obtained using extratherapeutic concentrations of lithium, results of this study provide useful information towards understanding the mode of action of lithium. This study associates lithium with reduced oxidative stress in LPS-activated Raw 264.7 macrophages and further suggests candidate molecular targets for the regulation of oxidative stress-related diseases using lithium beyond bipolar disorders.


2012 ◽  
Vol 108 (9) ◽  
pp. 1562-1573 ◽  
Author(s):  
Victor Pallarès ◽  
Damien Calay ◽  
Lídia Cedó ◽  
Anna Castell-Auví ◽  
Martine Raes ◽  
...  

Macrophages play an important role in immunogenic challenges by producing reactive oxygen species, NO and proinflammatory cytokines that can aggravate and propagate local inflammation. Multiple mechanisms regulate these inflammatory processes. NF-κB and activator protein 1 pathways are crucial in the expression of proinflammatory genes, such as TNF-α, IL-1 (α or β) and -6. Some polyphenols, which are present in beverages, vegetables and fruits, and PUFA, which are present in marine oils and fish food, possess anti-inflammatory effects in vivo and in vitro. Our aim in the present study was to assess whether polyphenols and PUFA have synergistic anti-inflammatory effects in murine macrophages in vitro. Inflammation in RAW 264.7 macrophages was induced by lipopolysaccharide at 100 ng/ml. The treatments with molecules were performed by co-incubation for 19 h. A NO production assay by Griess reaction, a phosphoprotein assay by Pathscan ELISA kit and gene expression analysis using the TaqMan® Low-density Array for ninety-one genes related to inflammation, oxidative stress and metabolism were performed to assess the synergistic anti-inflammatory effects of polyphenols, epigallocatechin gallate and resveratrol (Res; 2·5 μg/ml), and the PUFA, DHA and EPA (30 μm). Adding Res+EPA had an enhanced anti-inflammatory effect, in comparison with EPA and Res alone, leading to decreased NO levels; modulating the phospho-stress activated protein kinase/Jun N-terminal kinase (P-SAPK/JNK) level; down-regulating proinflammatory genes, such as IL, chemokines, transcription factors; and up-regulating several antioxidant genes. Therefore, this combination has a stronger anti-inflammatory effect than either of these molecules separately in RAW macrophages.


2010 ◽  
Vol 299 (2) ◽  
pp. L184-L191 ◽  
Author(s):  
Gu Seob Roh ◽  
Chin-ok Yi ◽  
Yu Ji Cho ◽  
Byeong Tak Jeon ◽  
Irina Tsoy Nizamudtinova ◽  
...  

Chronic airway inflammation is a characteristic feature of destructive cigarette smoking (CS)-induced lung disease, particularly in patients with emphysema. Celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, is widely used to treat inflammation. However, the exact mechanisms underlying this drug's anti-inflammatory effects have not yet been determined in pulmonary emphysema. Here, we explore whether celecoxib attenuates CS-induced inflammation in rat lungs. Rats were exposed to smoke and received celecoxib via intragastric feeding daily for 20 wk. We found that celecoxib inhibited interalveolar wall distance and pulmonary inflammation in the lungs of CS-treated rats. Celecoxib inhibited serum NO production, iNOS, COX-2 expression, and PGE2 production in CS-treated lung tissues. Our immunohistochemical data showed that CS-induced CD68 and COX-2 expression were inhibited by celecoxib. Furthermore, celecoxib attenuated the activation of phospho-IκBα and NF-κB in CS-treated rat lung. In addition, there was an inhibitory effect of celecoxib on the COX-2 expression and NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Celecoxib also attenuated NF-κB activation in COX-2 siRNA-transfected RAW 264.7 macrophages. Thus, our findings suggest that the anti-inflammatory effects of celecoxib are mediated by its effects on NF-κB-regulated gene expression, which ultimately reduces the progression of CS-induced pulmonary emphysema.


2006 ◽  
Vol 54 (9) ◽  
pp. 3472-3478 ◽  
Author(s):  
Kai-Li Liu ◽  
Haw-Wen Chen ◽  
Ruei-Yun Wang ◽  
Yen-Ping Lei ◽  
Lee-Yen Sheen ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 443
Author(s):  
Dahae Lee ◽  
Akida Alishir ◽  
Tae Su Jang ◽  
Ki Hyun Kim

Cornus walteri (Cornaceae), known as Walter’s dogwood, has been used to treat dermatologic inflammation and diarrheal disease in traditional oriental medicine. As part of an ongoing research project to discover natural products with biological activities, the anti-inflammatory potential of compounds from C. walteri in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages were explored. Phytochemical analysis of the methanol extract of the stem and stem bark of C. walteri led to the isolation of 15 chemical constituents. These compounds were evaluated for their inhibitory effects on the production of the proinflammatory mediator nitric oxide (NO) in LPS-stimulated macrophages, as measured by NO assays. The molecular mechanisms underlying the anti-inflammatory activity were investigated using western blotting. Our results demonstrated that among 15 chemical constituents, lupeol and benzyl salicylate inhibited NO production in LPS-activated RAW 264.7 macrophages. Benzyl salicylate was more efficient than NG-monomethyl-L-arginine mono-acetate salt (L-NMMA) in terms of its inhibitory effect. In addition, the mechanism of action of benzyl salicylate consisted of the inhibition of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKβ), inhibitor of kappa B alpha (IκBα), and nuclear factor kappa B (NF-κB) in LPS-stimulated macrophages. Furthermore, benzyl salicylate inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Taken together, these results suggest that benzyl salicylate present in the stem and stem bark of C. walteri has potential anti-inflammatory activity, supporting the potential application of this compound in the treatment of inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 920
Author(s):  
Jae Sik Yu ◽  
Sung Ho Lim ◽  
Seoung Rak Lee ◽  
Chang-Ik Choi ◽  
Ki Hyun Kim

In this study, the protective effects of white mulberry (Morus alba) fruits on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were investigated. The ethanol (EtOH) extract of white mulberry fruits and its derived fractions contained adequate total phenolic and flavonoid contents, with good in vitro antioxidant radical scavenging activity. The extract and fractions also markedly inhibited ROS generation and antioxidant activity. After treatment with the EtOH extract and its fractions, LPS stimulation-induced elevated nitric oxide (NO) production was restored, which was primarily mediated by downregulation of inducible NO synthase expression. A total of 20 chemical constituents including flavonoids, steroids, and phenolics were identified in the fractions using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight (QTOF) high-resolution mass spectrometry (HRMS). These findings provide experimental evidence of the protective effects of white mulberry fruit extract against oxidative stress and inflammatory responses, suggesting their nutraceutical and pharmaceutical potential as natural antioxidant and anti-inflammatory agents.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2104 ◽  
Author(s):  
Jingya Ruan ◽  
Zheng Li ◽  
Jiejing Yan ◽  
Peijian Huang ◽  
Haiyang Yu ◽  
...  

Four new thiophenes, (3′′R)-pluthiophenol (1), (3′′R)-pluthiophenol-4′′-acetate (2), 3′′-ethoxy-(3′′S)-pluthiophenol (3), 3′′-ethoxy-(3′′S)-pluthiophenol-4′′-acetate (4), together with twenty-five known compounds were obtained from the 70% ethanol-water extract of the aerial parts of Pluchea indica Less. Their structures were elucidated by spectroscopic methods. Among the known isolates, compounds 7, 8, 11, 14, 15, 18, 20, 23, 25–27 were isolated from Asteraceae family firstly, while compounds 6, 9, 10, 12, 13, 16, 19, 21, 28 were isolated from Pluchea genus for the first time. Meanwhile, compounds 1, 2, 10, 13, 18, 23 displayed significant inhibitory activities on LPS-induced NO production at 40 µM from RAW 264.7 macrophages, while compounds 3, 4, 26–29 possessed moderate inhibitory effects.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Aruanã Joaquim Matheus Costa Rodrigues Pinheiro ◽  
Jaciara Sá Gonçalves ◽  
Ádylla Wilenna Alves Dourado ◽  
Eduardo Martins de Sousa ◽  
Natilene Mesquita Brito ◽  
...  

The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p<0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI.


Sign in / Sign up

Export Citation Format

Share Document