scholarly journals Isoquinolinequinone Derivatives from a Marine Sponge (Haliclona sp.) Regulate Inflammation in In Vitro System of Intestine

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 90
Author(s):  
Yun Kim ◽  
Yeong Ji ◽  
Na-Hyun Kim ◽  
Nguyen Van Tu ◽  
Jung-Rae Rho ◽  
...  

Using bio-guided fractionation and based on the inhibitory activities of nitric oxide (NO) and prostaglandin E2 (PGE2), eight isoquinolinequinone derivatives (1–8) were isolated from the marine sponge Haliclona sp. Among these, methyl O-demethylrenierate (1) is a noble ester, whereas compounds 2 and 3 are new O-demethyl derivatives of known isoquinolinequinones. Compound 8 was assigned as a new 21-dehydroxyrenieramycin F. Anti-inflammatory activities of the isolated compounds were tested in a co-culture system of human epithelial Caco-2 and THP-1 macrophages. The isolated derivatives showed variable activities. O-demethyl renierone (5) showed the highest activity, while 3 and 7 showed moderate activities. These bioactive isoquinolinequinones inhibited lipopolysaccharide and interferon gamma-induced production of NO and PGE2. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and the phosphorylation of MAPKs were down-regulated in response to the inhibition of NF-κB nuclear translocation. In addition, nuclear translocation was markedly promoted with a subsequent increase in the expression of HO-1. Structure-activity relationship studies showed that the hydroxyl group in 3 and 5, and the N-formyl group in 7 may be key functional groups responsible for their anti-inflammatory activities. These findings suggest the potential use of Haliclona sp. and its metabolites as pharmaceuticals treating inflammation-related diseases including inflammatory bowel disease.

Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 634 ◽  
Author(s):  
Seon Min Lee ◽  
Na-Hyun Kim ◽  
Sangbum Lee ◽  
Yun Na Kim ◽  
Jeong Doo Heo ◽  
...  

The inflammatory bowel diseases (IBD) cause chronic inflammation of the gastrointestinal tract and include ulcerative colitis (UC) and Crohn’s disease (CD). The prevalence of IBD has been increasing worldwide, and has sometimes led to irreversible impairment of gastrointestinal structure and function. In the present study, we successfully isolated a new phylloketal derivative, deacetylphylloketal (1) along with four known compounds from the sponge genus Phyllospongia. The anti-inflammatory properties of deacetylphylloketal (1) and phyllohemiketal A (2) were evaluated using an in vitro co-culture system that resembles the intestinal epithelial environment. A co-culture system was established that consisted of human epithelial Caco-2 cells and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophage cells. The treatment of co-cultured THP-1 cells with compounds 1 or 2 significantly suppressed the production and/or gene expression of lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2), Interleukin-6 (IL-6), IL-1β and Tumor Necrosis Factor alpha (TNF-α). The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 were down-regulated in response to inhibition of NF-kB translocation into the nucleus in cells. In addition, we observed that 1 and 2 markedly promoted the nuclear translocation of Nrf2 and subsequent increase in the expression of heme oxygernase (HO)-1. These findings suggest the potential use of sponge genus Phyllospongia and its metabolites as a pharmaceutical aid in the treatment of inflammation-related diseases including IBD.


2021 ◽  
Vol 22 (21) ◽  
pp. 12009
Author(s):  
Yu Han ◽  
Chen Yuan ◽  
Xiaowei Zhou ◽  
Yingjie Han ◽  
Yanhao He ◽  
...  

Oleanolic acid (OA), asiatic acid (AA), and maslinic acid (MA) are ubiquitous isomeric triterpene phytochemicals with many pharmacological effects. To improve their application value, we used lipopolysaccharide (LPS) to induce RAW264.7 cells and studied the differences in the anti-inflammatory effects of the triterpenes according to their structural differences. MTT, Griess, and immunofluorescence assays, ELISA, flow cytometry, and Western blotting, were performed. The release of LPS-induced pro-inflammatory mediators, such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), and interleukin (IL-6), was significantly inhibited by OA, AA, and MA at the same concentration, and AA and MA promoted the production of anti-inflammatory factor IL-10. OA, AA, and MA inhibited LPS-induced NF-κB nuclear translocation in RAW264.7 cells. OA and AA inhibited the phosphorylation of ERK1/2, P38, and JNK1/2 in LPS-stimulated RAW264.7 cells. Moreover, OA increased LPS-induced Nrf2 expression and decreased Keap1 expression in RAW264.7 cells. OA, AA, and MA inhibited LPS-stimulated intracellular reactive oxygen species (ROS) production and alleviated mitochondrial membrane potential depletion. Overall, our data suggested that OA, AA, and MA exhibited significant anti-inflammatory effects in vitro. In particular, OA and AA take effects through the MAPKs, NF-κB, and Nrf2 signaling pathways.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3394 ◽  
Author(s):  
Seon Min Lee ◽  
Na-Hyun Kim ◽  
Sangbum Lee ◽  
Yun Na Kim ◽  
Jeong-Doo Heo ◽  
...  

Crohn’s disease (CD) and ulcerative colitis (UC), collectively referred to as inflammatory bowel disease (IBD), are autoimmune diseases characterized by chronic inflammation within the gastrointestinal tract. Debromohymenialdisine is an active pyrrole alkaloid that is well known to serve as a stable and effective inhibitor of Chk2. In the present study, we attempted to investigate the anti-inflammatory properties of (10Z)-debromohymenialdisine (1) isolated from marine sponge Stylissa species using an intestinal in vitro model with a transwell co-culture system. The treatment with 1 attenuated the production and gene expression of lipopolysaccharide (LPS)-induced Interleukin (IL)-6, IL-1β, prostaglandin E2 (PGE2), and tumor necrosis factor-α in co-cultured THP-1 macrophages at a concentration range of 1–5 μM. The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were down-regulated in response to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation into the nucleus in cells. In addition, we observed that 1 markedly promoted the nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2) and subsequent increase of heme oxygenase-1 (HO-1) expression. These findings suggest the potential use of 1 as a pharmaceutical lead in the treatment of inflammation-related diseases including IBD.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2349
Author(s):  
Carlos Sanhueza ◽  
Jimena Castillo Bennett ◽  
Manuel Valenzuela-Valderrama ◽  
Pamela Contreras ◽  
Lorena Lobos-González ◽  
...  

Caveolin-1 (CAV1) is a well-established nitric oxide synthase inhibitor, whose function as a tumor suppressor is favored by, but not entirely dependent on, the presence of E-cadherin. Tumors are frequently hypoxic and the activation of the hypoxia-inducible factor-1α (HIF1α) promotes tumor growth. HIF1α is regulated by several post-translational modifications, including S-nitrosylation. Here, we evaluate the mechanisms underlying tumor suppression by CAV1 in cancer cells lacking E-cadherin in hypoxia. Our main findings are that CAV1 reduced HIF activity and Vascular Endothelial Growth Factor expression in vitro and in vivo. This effect was neither due to reduced HIF1α protein stability or reduced nuclear translocation. Instead, HIF1α S-nitrosylation observed in hypoxia was diminished by the presence of CAV1, and nitric oxide synthase (NOS) inhibition by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) reduced HIF1α transcriptional activity in cells to the same extent as observed upon CAV1 expression. Additionally, arginase inhibition by (S)-(2-Boronoethyl)-L-cysteine (BEC) partially rescued cells from the CAV1-mediated suppression of HIF1α transcriptional activity. In vivo, CAV1-mediated tumor suppression was dependent on NOS activity. In summary, CAV1-dependent tumor suppression in the absence of E-cadherin is linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α S-nitrosylation.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zunpeng Shu ◽  
Na Xing ◽  
Qiuhong Wang ◽  
Xinli Li ◽  
Bingqing Xu ◽  
...  

This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract ofP. Alkekengi(50-EFP) has antibacterial and/or anti-inflammatory activity bothin vivoandin vitroand to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activityin vitroand efficacyin vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2(PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activityin vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities bothin vitroandin vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1859 ◽  
Author(s):  
Dawoon Jeong ◽  
Guang-zhi Dong ◽  
Hwa Jin Lee ◽  
Jae-Ha Ryu

In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 1–3 showed concentration-dependent inhibitory effects on production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 1–3 suppressed the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, compounds 1–3 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them, compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together, these results suggest that compounds 1–3 from A. macrocephala can be therapeutic candidates to treat inflammatory diseases.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 300
Author(s):  
Moo Rim Kang ◽  
Sun Ah Jo ◽  
Hyunju Lee ◽  
Yeo Dae Yoon ◽  
Joo-Hee Kwon ◽  
...  

Scytonemin is a yellow-green ultraviolet sunscreen pigment present in different genera of aquatic and terrestrial blue-green algae, including marine cyanobacteria. In the present study, the anti-inflammatory activities of scytonemin were evaluated in vitro and in vivo. Topical application of scytonemin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear swelling in BALB/c mice. The expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) was also suppressed by scytonemin treatment in the TPA-treated ear of BALB/c mice. In addition, scytonemin inhibited lipopolysaccharide (LPS)-induced production of TNF-α and nitric oxide (NO) in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expressions of TNF-α and iNOS were also suppressed by scytonemin in LPS-stimulated RAW 264.7 cells. Further study demonstrated that LPS-induced NF-κB activity was significantly suppressed by scytonemin treatment in RAW 264.7 cells. Our results also showed that the degradation of IκBα and nuclear translocation of the p65 subunit were blocked by scytonemin in LPS-stimulated RAW 264.7 cells. Collectively, these results suggest that scytonemin inhibits skin inflammation by blocking the expression of inflammatory mediators, and the anti-inflammatory effect of scytonemin is mediated, at least in part, by down-regulation of NF-κB activity. Our results also suggest that scytonemin might be used as a multi-function skin care ingredient for UV protection and anti-inflammation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Silva ◽  
A. S. Oliveira ◽  
C. V. Vaz ◽  
S. Correia ◽  
R. Ferreira ◽  
...  

AbstractIn light of Medical Hydrology, thermal waters (TW) are all-natural mineral waters that emerge inside a thermal resort and have therapeutic applications. Their beneficial effect has been empirically recognized for centuries, being indicated for symptom alleviation and/or treatment of several diseases, almost all associated with inflammation. Indeed, an anti-inflammatory effect has been attributed to many different Portuguese TW but there is no scientific validation supporting this empiric knowledge. In the present study, we aimed to investigate the anti-inflammatory properties of 14 TW pertaining to thermal centers located in the Central Region of Portugal, and grouped according to their ionic profile. Mouse macrophage cells stimulated with lipopolysaccharide (LPS), a Toll-like receptor 4 agonist, were exposed to culture medium prepared in TW. Metabolism, nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression levels and the scavenging capacity of TW, were investigated in vitro. 11 out of 14 TW reduced NO production and/or iNOS expression, and/or scavenging activity, in macrophages exposed to LPS. The sulphated/calcic TW did not show any effect on at least one of the inflammatory parameters evaluated. Two sulphurous/bicarbonate/sodic TW and the sulphurous/chlorinated/sodic TW promoted an increase in NO production and/or iNOS expression. Our results validate, for the first time, the anti-inflammatory properties of Portuguese TW, supporting their therapeutic use in the treatment of inflammation-related diseases and promoting their putative application in cosmetic products and medical devices.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hsueh-Ling Cheng ◽  
Nurkholis ◽  
Shi-Yie Cheng ◽  
Shen-Da Huang ◽  
Yan-Ting Lu ◽  
...  

Fatsia polycarpa, a plant endemic to Taiwan, is an herbal medicine known for treating several inflammation-related diseases, but its biological function needs scientific support. Thus, the anti-inflammatory effects and mechanisms of the methanolic crude extract (MCE) ofF. polycarpaand its feature constituents, that is, brassicasterol (a phytosterol), triterpenoids 3α-hydroxyolean-11,13(18)-dien-28-oic acid (HODA), 3α-hydroxyolean-11-en-28,13β-olide (HOEO), fatsicarpain D, and fatsicarpain F, were investigated. MCE and HOEO, but not brassicasterol, dose-dependently inhibited lipopolysaccharide- (LPS-)induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophage line, whereas HODA, fatsicarpain D and fatsicarpain F were toxic to RAW cells. Additionally, MCE and HOEO suppressed LPS-induced production of nitric oxide, prostaglandin E2, and interleukin-1βand interfered with LPS-promoted activation of the inhibitor kappa B kinase (IKK)/nuclear factor-κB (NF-κB) pathway, and that of the mitogen-activated protein kinases (MAPKs) extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In animal tests, MCE and HOEO effectively ameliorated 12-O-tetradecanoylphorobol-13 acetate- (TPA-)induced ear edema of mice. Thus, MCE ofF. polycarpaexhibited an obvious anti-inflammatory activityin vivoandin vitrothat likely involved the inhibition of the IKK/NF-κB pathway and the MAPKs, which may be attributed by triterpenoids such as HOEO.


2013 ◽  
Vol 658 ◽  
pp. 30-33
Author(s):  
Qiang Song Wang ◽  
Xiang Li ◽  
Yuan Lu Cui

In the present study, the anti-inflammatory effects of tetrandrine-loading poly (L-lactic acid) (PLLA) films were investigated in vitro. The surface characteristics of blank PLLA film and tetrandrine-loading PLLA films were examined by electron spectroscopy for chemical analysis (ESCA). The ESCA data suggested that the tetrandrine-loading PLLA films became enriched with nitrogen atoms. The MTT assay was applied to evaluate the cytotoxicity of PLLA films with RAW264.7 cells. Production of nitric oxide (NO) was measured by the Griess colorimetric method. The gene expression levels of inducible nitric oxide synthase (iNOS) and IL-6 were detected by quantitative real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). These results suggested that the anti-inflammatory effects of tetrandrine-loading PLLA films might be the results from modulating the NO/iNOS pathway and inhibiting the mRNA expression of iNOS and IL-6 in activated macrophages.


Sign in / Sign up

Export Citation Format

Share Document