scholarly journals Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma

Medicina ◽  
2019 ◽  
Vol 55 (6) ◽  
pp. 284 ◽  
Author(s):  
Oxana Kytikova ◽  
Tatyana Novgorodtseva ◽  
Yulia Denisenko ◽  
Marina Antonyuk ◽  
Tatyana Gvozdenko

Asthma is one of the most important medical and social problems of our time due to the prevalence and the complexity of its treatment. Chronic inflammation that is characteristic of asthma is accompanied by bronchial obstruction, which involves various lipid mediators produced from n-6 and n-3 polyunsaturated fatty acids (PUFAs). The review is devoted to modern ideas about the PUFA metabolites—eicosanoids (leukotrienes, prostaglandins, thromboxanes) and specialized pro-resolving lipid mediators (SPMs) maresins, lipoxins, resolvins, protectins. The latest advances in clinical lipidomics for identifying and disclosing the mechanism of synthesis and the biological action of SPMs have been given. The current views on the peculiarities of the inflammatory reaction in asthma and the role of highly specialized metabolites of arachidonic, eicosapentaenoic and docosahexaenoic acids in this process have been described. The possibility of using SPMs as therapeutic agents aimed at controlling the resolution of inflammation in asthma is discussed.

2021 ◽  
Vol 22 (9) ◽  
pp. 4356
Author(s):  
Eva Knuplez ◽  
Eva Maria Sturm ◽  
Gunther Marsche

Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and ‘pro-inflammatory’ phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.


2020 ◽  
Vol 11 (10) ◽  
pp. 9057-9066
Author(s):  
N. Sáinz ◽  
M. Fernández-Galilea ◽  
A. G. V. Costa ◽  
P. L. Prieto-Hontoria ◽  
G. M. Barraco ◽  
...  

n-3 PUFAs block the TNF-α-stimulatory effect on chemerin through GPR120 in 3T3-L1 adipocytes. RvD1, RvD2 and MaR1 also prevent TNF-α actions on chemerin in human adipocytes.


2016 ◽  
Vol 9 ◽  
pp. NMI.S39043 ◽  
Author(s):  
Salma A. Abdelmagid ◽  
Jessica L. MacKinnon ◽  
Sarah M. Janssen ◽  
David W.L. Ma

Diet and exercise are recognized as important lifestyle factors that significantly influence breast cancer risk. In particular, dietary n-3 polyunsaturated fatty acids (PUFAs) have been shown to play an important role in breast cancer prevention. Growing evidence also demonstrates a role for exercise in cancer and chronic disease prevention. However, the potential synergistic effect of n-3 PUFA intake and exercise is yet to be determined. This review explores targets for breast cancer prevention that are common between n-3 PUFA intake and exercise and that may be important study outcomes for future research investigating the combined effect of n-3 PUFA intake and exercise. These lines of evidence highlight potential new avenues for research and strategies for breast cancer prevention.


2013 ◽  
Vol 7 (8) ◽  
pp. e2381 ◽  
Author(s):  
Julio J. Amaral ◽  
Luis Caetano M. Antunes ◽  
Cristiana S. de Macedo ◽  
Katherine A. Mattos ◽  
Jun Han ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 700
Author(s):  
Yohannes Abere Ambaw ◽  
Martin P. Pagac ◽  
Antony S. Irudayaswamy ◽  
Manfred Raida ◽  
Anne K. Bendt ◽  
...  

Malassezia are common components of human skin, and as the dominant human skin eukaryotic microbe, they take part in complex microbe–host interactions. Other phylogenetically related fungi (including within Ustilagomycotina) communicate with their plant host through bioactive oxygenated polyunsaturated fatty acids, generally known as oxylipins, by regulating the plant immune system to increase their virulence. Oxylipins are similar in structure and function to human eicosanoids, which modulate the human immune system. This study reports the development of a highly sensitive mass-spectrometry-based method to capture and quantify bioactive oxygenated polyunsaturated fatty acids from the human skin surface and in vitro Malassezia cultures. It confirms that Malassezia are capable of synthesizing eicosanoid-like lipid mediators in vitro in a species dependent manner, many of which are found on human skin. This method enables sensitive identification and quantification of bioactive lipid mediators from human skin that may be derived from metabolic pathways shared between skin and its microbial residents. This enables better cross-disciplinary and detailed studies to dissect the interaction between Malassezia and human skin, and to identify potential intervention points to promote or abrogate inflammation and to improve human skin health.


Sign in / Sign up

Export Citation Format

Share Document