scholarly journals Performance and Microbial Community of Different Biofilm Membrane Bioreactors Treating Antibiotic-Containing Synthetic Mariculture Wastewater

Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 282
Author(s):  
Huining Zhang ◽  
Xin Yuan ◽  
Hanqing Wang ◽  
Shuoqi Ma ◽  
Bixiao Ji

The performance of pollutant removals, tetracycline (TC) and norfloxacin (NOR) removals, membrane fouling mitigation and the microbial community of three Anoxic/Oxic membrane bioreactors (AO-MBRs), including a moving bed biofilm MBR (MBRa), a fixed biofilm MBR (MBRb) and an AO-MBR (MBRc) for control, were compared in treating antibiotic-containing synthetic mariculture wastewater. The results showed that MBRb had the best effect on antibiotic removal and membrane fouling mitigation compared to the other two bioreactors. The maximum removal rate of TC reached 91.65% and the maximum removal rate of NOR reached 45.46% in MBRb. The addition of antibiotics had little effect on the removal of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N)—both maintained more than 90% removal rate during the entire operation. High-throughput sequencing demonstrated that TC and NOR resulted in a significant decrease in the microbial diversity and the microbial richness MBRs. Flavobacteriia, Firmicutes and Azoarcus, regarded as drug-resistant bacteria, might play a crucial part in the removal of antibiotics. In addition, the dynamics of microbial community had a great change, which included the accumulation of resistant microorganisms and the gradual reduction or disappearance of other microorganisms under antibiotic pressure. The research provides an insight into the antibiotic-containing mariculture wastewater treatment and has certain reference value.

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2383
Author(s):  
Magela Odriozola ◽  
Nicolás Morales ◽  
Jose R. Vázquez-Padín ◽  
Maria Lousada-Ferreira ◽  
Henri Spanjers ◽  
...  

Cationic polymers have proven to be suitable flux enhancers (FEs) in large-scale aerobic membrane bioreactors (MBRs), whereas in anaerobic membrane bioreactors (AnMBRs) research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly translated to AnMBRs because the extent and nature of membrane fouling under anaerobic and aerobic conditions are different. Our research focused on the long-term effect of dosing the cationic polymer Adifloc KD451 to a pilot AnMBR, fed with source-separated domestic blackwater. A single dosage of Adifloc KD451 at 50 mg L−1 significantly enhanced the filtration performance in the AnMBR, revealed by a decrease in both fouling rate and total filtration resistance. Nevertheless, FE addition had an immediate negative effect on the specific methanogenic activity (SMA), but this was a reversible process that had no adverse effect on permeate quality or chemical oxygen demand (COD) removal in the AnMBR. Moreover, the FE had a long-term positive effect on AnMBR filtration performance and sludge filterability. These findings indicate that dosing Adifloc KD451 is a suitable strategy for fouling mitigation in AnMBRs because it led to a long-term improvement in filtration performance, while having no significant adverse effects on permeate quality or COD removal.


RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 9180-9186 ◽  
Author(s):  
Ren Zhijun ◽  
Wang Pengfei ◽  
Tian Jiayu ◽  
Zhang Zhiliu

This study aims to investigate the performance of a low-strength magnetic field in membrane bioreactors (MBRs) for membrane fouling mitigation and its effects on sludge characteristics and microbial community.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2231 ◽  
Author(s):  
Hongjun Ni ◽  
Kaixuan Wang ◽  
Shuaishuai Lv ◽  
Xingxing Wang ◽  
Lu Zhuo ◽  
...  

The variation of substrate concentration in anode chamber directly affects the power generation efficiency and decontamination performance of microbial fuel cell (MFC). In this study, three concentrations of swine wastewater with 800 mg/L, 1600 mg/L and 2500 mg/L were selected as substrates, and the performance of MFC and response characteristics of anode microbial community were investigated. The results show that the concentration of a selected substrate is positively correlated with the output voltage of MFC and chemical oxygen demand (COD) removal rate. The microbial community diversity in the anode chamber and the performance of battery can be significantly affected when concentration changes in different ways, which helps to selectively cultivate the adaptable dominant bacteria to enhance the stability and decontamination performance of MFC. The community structure of anodic biofilm is mainly composed of Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Spirochaetae. These findings are meaningful to improve the treatment effects of swine wastewater and can help to find out the mechanism of varying concentration that influences the production of microorganisms in MFC.


2014 ◽  
Vol 69 (7) ◽  
pp. 1403-1409 ◽  
Author(s):  
Sher Jamal Khan ◽  
Aman Ahmad ◽  
Muhammad Saqib Nawaz ◽  
Nicholas P. Hankins

In this study, three laboratory scale submerged membrane bioreactors (MBRs) comprising a conventional MBR (C-MBR), moving bed MBR (MB-MBR) and anoxic-oxic MBR (A/O-MBR) were continuously operated with synthesized domestic wastewater (chemical oxygen demand, COD = 500 mg/L) for 150 days under similar operational and environmental conditions. Kaldnes® plastic media with 20% dry volume was used as a biofilm carrier in the MB-MBR and A/O-MBR. The treatment performance and fouling propensity of the MBRs were evaluated. The effect of cake layer formation in all three MBRs was almost the same. However, pore blocking caused a major difference in the resultant water flux. The A/O-MBR showed the highest total nitrogen and phosphorus (PO4-P) removal efficiencies of 83.2 and 69.7%, respectively. Due to the high removal of nitrogen, fewer protein contents were found in the soluble and bound extracellular polymeric substances (EPS) of the A/O-MBR. Fouling trends of the MBRs showed 12, 14 and 20 days filtration cycles for C-MBR, MB-MBR and A/O-MBR, respectively. A 25% reduction of the soluble EPS and a 37% reduction of the bound EPS concentrations in A/O-MBR compared with C-MBR was a major contributing factor for fouling retardation and the enhanced filtration capacity of the A/O-MBR.


2012 ◽  
Vol 66 (6) ◽  
pp. 1220-1224
Author(s):  
Suwasa Kantawanichkul ◽  
Walaya Boontakhum

In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1–2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.


2016 ◽  
Vol 73 (11) ◽  
pp. 2662-2669 ◽  
Author(s):  
Siyu Song ◽  
Jing Pan ◽  
Shiwei Wu ◽  
Yijing Guo ◽  
Jingxiao Yu ◽  
...  

The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4+-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.


Sign in / Sign up

Export Citation Format

Share Document