scholarly journals Fouling Mitigation by Cationic Polymer Addition into a Pilot-Scale Anaerobic Membrane Bioreactor Fed with Blackwater

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2383
Author(s):  
Magela Odriozola ◽  
Nicolás Morales ◽  
Jose R. Vázquez-Padín ◽  
Maria Lousada-Ferreira ◽  
Henri Spanjers ◽  
...  

Cationic polymers have proven to be suitable flux enhancers (FEs) in large-scale aerobic membrane bioreactors (MBRs), whereas in anaerobic membrane bioreactors (AnMBRs) research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly translated to AnMBRs because the extent and nature of membrane fouling under anaerobic and aerobic conditions are different. Our research focused on the long-term effect of dosing the cationic polymer Adifloc KD451 to a pilot AnMBR, fed with source-separated domestic blackwater. A single dosage of Adifloc KD451 at 50 mg L−1 significantly enhanced the filtration performance in the AnMBR, revealed by a decrease in both fouling rate and total filtration resistance. Nevertheless, FE addition had an immediate negative effect on the specific methanogenic activity (SMA), but this was a reversible process that had no adverse effect on permeate quality or chemical oxygen demand (COD) removal in the AnMBR. Moreover, the FE had a long-term positive effect on AnMBR filtration performance and sludge filterability. These findings indicate that dosing Adifloc KD451 is a suitable strategy for fouling mitigation in AnMBRs because it led to a long-term improvement in filtration performance, while having no significant adverse effects on permeate quality or COD removal.

Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 282
Author(s):  
Huining Zhang ◽  
Xin Yuan ◽  
Hanqing Wang ◽  
Shuoqi Ma ◽  
Bixiao Ji

The performance of pollutant removals, tetracycline (TC) and norfloxacin (NOR) removals, membrane fouling mitigation and the microbial community of three Anoxic/Oxic membrane bioreactors (AO-MBRs), including a moving bed biofilm MBR (MBRa), a fixed biofilm MBR (MBRb) and an AO-MBR (MBRc) for control, were compared in treating antibiotic-containing synthetic mariculture wastewater. The results showed that MBRb had the best effect on antibiotic removal and membrane fouling mitigation compared to the other two bioreactors. The maximum removal rate of TC reached 91.65% and the maximum removal rate of NOR reached 45.46% in MBRb. The addition of antibiotics had little effect on the removal of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N)—both maintained more than 90% removal rate during the entire operation. High-throughput sequencing demonstrated that TC and NOR resulted in a significant decrease in the microbial diversity and the microbial richness MBRs. Flavobacteriia, Firmicutes and Azoarcus, regarded as drug-resistant bacteria, might play a crucial part in the removal of antibiotics. In addition, the dynamics of microbial community had a great change, which included the accumulation of resistant microorganisms and the gradual reduction or disappearance of other microorganisms under antibiotic pressure. The research provides an insight into the antibiotic-containing mariculture wastewater treatment and has certain reference value.


2012 ◽  
Vol 66 (1) ◽  
pp. 9-14 ◽  
Author(s):  
C. Thiemig

Sludge properties have a strong impact on the operational aspects of membrane bioreactors (MBRs). Poor sludge properties cause stronger membrane fouling and reduce the filtration performance of MBRs. Up to now there is no general method used to measure the fouling or filtration relevant sludge properties in MBRs. The aim of this work was to develop a simple but reliable method to supply operators a tool to monitor the important sludge properties for their application and to compare this method with existing techniques. Through extensive research a new method called the sludge filtration index (SFI) has been developed to indicate the appropriate sludge parameters for MBR systems in a cheap and easy manner. The SFI can be measured with simple laboratory equipment and offers operators a powerful tool to monitor the conditions of their sludge, independent of the membrane conditions.


RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31364-31372
Author(s):  
Mengjing Cao ◽  
Yongxiang Zhang ◽  
Yan Zhang

A novel and amplifying anaerobic electrochemical membrane bioreactor was constructed and operated for a long time (204 days) with synthetic glucose solution having an average chemical oxygen demand (COD) of 315 mg L−1, at different applied voltages and room temperatures.


2014 ◽  
Vol 69 (7) ◽  
pp. 1403-1409 ◽  
Author(s):  
Sher Jamal Khan ◽  
Aman Ahmad ◽  
Muhammad Saqib Nawaz ◽  
Nicholas P. Hankins

In this study, three laboratory scale submerged membrane bioreactors (MBRs) comprising a conventional MBR (C-MBR), moving bed MBR (MB-MBR) and anoxic-oxic MBR (A/O-MBR) were continuously operated with synthesized domestic wastewater (chemical oxygen demand, COD = 500 mg/L) for 150 days under similar operational and environmental conditions. Kaldnes® plastic media with 20% dry volume was used as a biofilm carrier in the MB-MBR and A/O-MBR. The treatment performance and fouling propensity of the MBRs were evaluated. The effect of cake layer formation in all three MBRs was almost the same. However, pore blocking caused a major difference in the resultant water flux. The A/O-MBR showed the highest total nitrogen and phosphorus (PO4-P) removal efficiencies of 83.2 and 69.7%, respectively. Due to the high removal of nitrogen, fewer protein contents were found in the soluble and bound extracellular polymeric substances (EPS) of the A/O-MBR. Fouling trends of the MBRs showed 12, 14 and 20 days filtration cycles for C-MBR, MB-MBR and A/O-MBR, respectively. A 25% reduction of the soluble EPS and a 37% reduction of the bound EPS concentrations in A/O-MBR compared with C-MBR was a major contributing factor for fouling retardation and the enhanced filtration capacity of the A/O-MBR.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 733
Author(s):  
Jiaqi Yang ◽  
Mathias Monnot ◽  
Lionel Ercolei ◽  
Philippe Moulin

To improve membrane fouling management, the NaClO-assisted backwash has been developed to improve permeability maintenance and reduce the need for intensive chemical cleanings. This study is aimed to focus on the efficiency of NaClO-assisted backwash in real UF pilot scale and with periodic classic backwash (CB) and air backwash (AB). The impacts on hydraulic filtration performance, physicochemical properties of membrane material under different addition frequencies of NaClO, and the performance of chlorinated CB and AB will be discussed. In result, 10 mg Cl2 L−1 NaClO addition in backwash water is confirmed to greatly improve the overall filtration performance and backwash cleaning efficiency. One condition stands out from the other due to better control of irreversible fouling, less NaClO consumption in 10 years prediction, sustainable and adaptable filtration performance, and less potential damage on the physicochemical properties of the membrane. Additionally, it can be inferred from this experiment that frequent contact with NaClO induced some degradation on the PES-made UF membrane surface properties. To retain the best state of UF membrane on anti-fouling and qualified production, the optimized condition with more frequent NaClO contact was not suggested for long-term filtration.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
C–Y. Chang ◽  
Roger Ben Aim ◽  
S. Vigneswaran ◽  
J–S. Chang ◽  
S–L. Chen

A laboratory scale membrane bioreactor (MBR) fed on real septic tank effluent was studied at different levels of alkalinity (0, 250 and 500 mg NaHCO3/L addition) and sludge retention time (SRT, complete sludge retention, 10 and 20 days). A long–term operation of 267 days was divided into 5 stages to examine the SRT and alkalinity influences on parameters related to nitrification, chemical oxygen demand (COD) removal, extracellular polymeric substances (EPS) production and membrane cleaning. The results of the study showed that the removals of TCOD, SCOD and NH4+–N varied between 86–94%, 71–86%, and 70–94%, respectively. Appropriate alkalinity supplement and SRT control can enhance the COD removal and nitrification. Irreversible membrane fouling occurred fast and water cleaning for the improvement of filtration capacity was ineffective. The results also revealed that the rejection of EPS played a major role both in the enhancement of removal efficiency as well as the increase of filtration resistance during the operation.


2002 ◽  
Vol 45 (10) ◽  
pp. 243-248 ◽  
Author(s):  
L. Seghezzo ◽  
R.G. Guerra ◽  
S.M. González ◽  
A.P. Trupiano ◽  
M.E. Figueroa ◽  
...  

The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6°C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28–0.85 m/h (HRT 3–9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions.


2012 ◽  
Vol 65 (5) ◽  
pp. 954-961 ◽  
Author(s):  
Maxime Remy ◽  
Hardy Temmink ◽  
Wim Rulkens

Previous research has demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactors (MBRs). This effect was related to the formation of stronger sludge flocs, which are less sensitive to shear. In this contribution the long-term effect of PAC addition was studied by running two parallel MBRs on sewage. To one of these, PAC was dosed and a lower fouling tendency of the sludge was verified, with a 70% longer sustainable filtration time. Low PAC dosages showed additional advantages with regard to oxygen transfer and dewaterability, which may provide savings on operational costs.


Sign in / Sign up

Export Citation Format

Share Document