scholarly journals Development of Environment-Friendly Membrane for Oily Industrial Wastewater Filtration

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 614
Author(s):  
Mohammed Alquraish ◽  
Yong Tzyy Jeng ◽  
Mohamed Kchaou ◽  
Yamuna Munusamy ◽  
Khaled Abuhasel

Latex phase blending and crosslinking method was used in this research work to produce nitrile butadiene rubber-graphene oxide (NBR-GO) membranes. This fabrication technique is new and yields environmentally friendly membranes for oil-water separation. GO loading was varied from 0.5 to 2.0 part per hundred-part rubber (pphr) to study its effect on the performance of NBR-GO membrane. GO was found to alter the surface morphology of the NBR matrix by introducing creases and fold on its surface, which then increases the permeation flux and rejection rate efficiency of the membrane. X-Ray diffraction analysis proves that GO was well dispersed in the membrane due to the non-existence of GO fingerprint diffraction peak at 2θ value of 10–12° in the membrane samples. The membrane filled with 2.0 pphr GO has the capability to permeate 7688.54 Lm−2 h−1 water at operating pressure of 0.3 bar with the corresponding rejection rate of oil recorded at 94.89%. As the GO loading increases from 0.5 to 2.0 pphr, fouling on the membrane surface also increases from Rt value of 45.03% to 87.96%. However, 100% recovery on membrane performance could be achieved by chemical backwashing.

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 709
Author(s):  
Asmat Ullah ◽  
Kamran Alam ◽  
Saad Ullah Khan ◽  
Victor M. Starov

A new method is proposed to increase the rejection in microfiltration by applying membrane oscillation, using a new type of microfiltration membrane with slotted pores. The oscillations applied to the membrane surface result in reduced membrane fouling and increased separation efficiency. An exact mathematical solution of the flow in the surrounding solution outside the oscillating membrane is developed. The oscillation results in the appearance of a lift velocity, which moves oil particles away from the membrane. The latter results in both reduced membrane fouling and increased oil droplet rejection. This developed model was supported by the experimental results for oil water separation in the produced water treatment. It was proven that the oil droplet concentration was reduced notably in the permeate, due to the membrane oscillation, and that the applied shear rate caused by the membrane oscillation also reduced pore blockage. A four-times lower oil concentration was recorded in the permeate when the membrane vibration frequency was 25 Hz, compared to without membrane vibration. Newly generated microfiltration membranes with slotted pores were used in the experiments.


2019 ◽  
Vol 6 (2) ◽  
pp. 181823 ◽  
Author(s):  
Guangyu Shi ◽  
Yizhu Qian ◽  
Fengzhi Tan ◽  
Weijie Cai ◽  
Yuan Li ◽  
...  

Oil/water separation is a field of high significance as it might efficiently resolve the contamination of industrial oily wastewater and other oil/water pollution. In this paper, an environmentally-friendly hydrophobic aerogel with high porosity and low density was successfully synthesized with renewable pomelo peels (PPs) as precursors. Typically, a series of sponge aerogels (HPSA-0, HPSA-1 and HPSA-2) were facilely prepared via high-speed dispersion, freeze-drying and silanization with methyltrimethoxysilane. Indeed, the physical properties of aerogel such as density and pore diameter could be tailored by different additives (filter paper fibre and polyvinyl alcohol). Hence, their physico-chemical properties including internal morphology and chemical structure were characterized in detail by Fourier transform infrared, Brunauer–Emmett–Teller, X-ray diffraction, scanning electron microscope, Thermal gravimetric analyzer (TG) etc. Moreover, the adsorption capacity was further determined and the results revealed that the PP-based aerogels presented excellent adsorption performance for a wide range of oil products and/or organic solvents (crude oil 49.8 g g −1 , soya bean oil 62.3 g g −1 , chloroform 71.3 g g −1 etc.). The corresponding cyclic tests showed the absorption capacity decreased slightly from 94.66% to 93.82% after 10 consecutive cycles, indicating a high recyclability.


2019 ◽  
Vol 43 (39) ◽  
pp. 15823-15831 ◽  
Author(s):  
Zixuan Zhou ◽  
Lejing Liu ◽  
Weizhong Yuan

A superhydrophobic PLA electrospun nanofibrous membrane surface-functionalized with TiO2 nanoparticles and methyltrichlorosilane can achieve oil/water separation and methylene blue adsorption.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 974 ◽  
Author(s):  
Zhi Liu ◽  
Detao Qin ◽  
Jianghui Zhao ◽  
Quan Feng ◽  
Zhengtao Li ◽  
...  

To address the worldwide oil and water separation issue, a novel approach was inspired by natural phenomena to synthesize superhydrophilic and underwater superoleophobic organic/inorganic nanofibrous membranes via a scale up fabrication approach. The synthesized membranes possess a delicate organic core of PVDF-HFP and an inorganic shell of a CuO nanosheet structure, which endows super-flexible properties owing to the merits of PVDF-HFP backbones, and superhydrophilic functions contributed by the extremely rough surface of a CuO nanosheet anchored on flexible PVDF-HFP. Such an organic core and inorganic shell architecture not only functionalizes membrane performance in terms of antifouling, high flux, and low energy consumption, but also extends the lifespan by enhancing its mechanical strength and alkaline resistance to broaden its applicability. The resultant membrane exhibits good oil/water separation efficiency higher than 99.7%, as well as excellent anti-fouling properties for various oil/water mixtures. Considering the intrinsic structural innovation and its integrated advantages, this core–shell nanofibrous membrane is believed to be promising for oil/water separation, and this facile approach is also easy for scaled up manufacturing of functional organic/inorganic nanofibrous membranes with insightful benefits for industrial wastewater treatment, sensors, energy production, and many other related areas.


2018 ◽  
Vol 65 ◽  
pp. 05023 ◽  
Author(s):  
Kok Poh Wai ◽  
Chai Hoon Koo ◽  
Yean Ling Pang ◽  
Woon Chan Chong ◽  
Woei Jye Lau

Silver nanoparticles (NP) was successfully immobilized on polydopamine (PDA) supported polyethersulfone (PES) membrane via a redox reaction. Polyvinylpyrrolidone (PVP) was added into membrane dope solution as a pore-forming agent. Four pieces of membranes (M1, M2, M3 and M4) were fabricated with different active layer coatings to compare their morphological and performance properties. The differences between each sample were highlighted as follow: M1 (pristine PES), M2 (PES+PVP), M3 (PDA/PES+PVP) and M4 (Ag/PDA/PES+PVP). All membranes were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and contact angle analysis. The membrane performance was examined using pure water permeability (PWP) test, antibacterial test and humic acid (HA) rejection test. Pristine M1 membrane showed that PWP of 27.16 LMH/bar and HA rejection of 84 %. In this study, it was found that the addition of PVP as a pore agent into the membrane M2 increased water flux but slightly deteriorated HA rejection. Coating of PDA on M3 and immobilizing silver NP on M4 membrane surface have improved HA rejection but compromised PWP. The results showed that membrane M4 carried excellent antibacterial property and highest HA rejection among all fabricated membranes.


2021 ◽  
Author(s):  
Jun Lu ◽  
Chaofan Cui ◽  
Qihao Yu ◽  
Juanjuan Su ◽  
Jian Han

Abstract Oily wastewater is an urgent issue threatening the ecosystem and human health. Superhydrophobic porous materials are widely concerned as promising candidates for effective oil/water separation and oil adsorption. However, superhydrophobic porous materials are still confronted with frustrations such as complex preparation processes and secondary pollution to the environment. Superhydrophobic porous materials with biodegradability and a relatively simple preparation process are more attractive to practical application and environmental protection. In this work, biodegradable and industrially applied polylactic acid (PLA)nonwoven materials were used as porous membranes, then PLA nanoparticles were loaded on the membrane surface to construct the hierarchical rough structure. The modified PLA nonwoven membrane (Nano-PLA) shows superhydrophobicity and efficient oil/water separation performance. Moreover, strong mechanical strength and acceptable toughness are obtained. This work offers an easily controlled and industrially used pathway for the design of robust, highly selective, and biodegradable oil/water separation materials.


2021 ◽  
Vol 945 (1) ◽  
pp. 012032
Author(s):  
Tzyy-Jeng Yong ◽  
Yamuna Munusamy ◽  
Yit-Thai Ong ◽  
Wei-Ming Yeoh ◽  
Mohamed Kchaou

Abstract Oily wastewater pollution has always been part of the most serious worldwide environmental disaster. Thus, the treatment of oily wastewater is notably crucial. In this work, nitrile butadiene rubber/graphene oxide (NBR/GO) membranes were fabricated by latex compounding and curing method which is comparatively brand-new technique to produce membranes for wastewater treatment. Therefore, the steps in the production need to be studied to enhance the performance of the membrane. Curing temperature is an important factor in the production of the latex-based membrane. In this paper, the effect of curing temperature in the range of 90 °C – 110 °C on the morphology, tensile properties, permeation flux, and oil rejection rate performance of the membrane was studied. The curing temperature was found to affect the surface morphology and integrity of the membranes which sequentially affects the performance of the membrane in terms of strength, permeation flux, and oil rejection rate. NBR/GO membranes cured at the temperature of 100 °C exhibit the highest flux of 491.84 L/m2.hr with an oil rejection rate of 95.44 %, with the ultimate tensile strength (UTS), elongation break (EB%), and E-Modulus (E-mod) of 34.490 MPa, 1627.11 %, and 1.309 MPa, respectively.


2021 ◽  
Vol 11 (4) ◽  
pp. 1779
Author(s):  
Khaled Abuhasel ◽  
Yong Tzyy Jeng ◽  
Yamuna Munusamy ◽  
Mohamed Kchaou ◽  
Mohammed Alquraish

Nitrile butadiene rubber (NBR) latex/graphene oxide (GO) membranes were fabricated through a latex compounding and curing method which is a relatively new method to produce membranes for wastewater treatment. Hence, the steps in the production of the membrane through this new approach need to be evaluated to optimize the performance of the membrane. In this paper, the effect of sulfur loading in the range of 0.5 to 1.5 parts per hundred rubber (phr) on the morphology, crosslink density, tensile properties, permeation flux and oil rejection rate performance of NBR/GO membranes was studied. The sulfur loading was found to influence the surface morphology and integrity of the membrane which in turn affects the performance of the membrane in terms of strength, water flux and rejection rate of oil. Inaccurate sulfur loading produced a membrane with micro cracks, low surface area for filtration and could not withstand the filtration pressure. In this research work, the membrane with 1.0 phr sulfur provides the highest water flux value and oil rejection rate of 834.1 L/m2·hr and 92.23%, respectively. Surface morphology of 1.0 phr sulfur-loaded membrane revealed the formation of continuous membrane with high structural integrity and with wrinkles and folded structure. Furthermore, micro cracks and a less effective surface area for filtration were observed for membranes with 0.5 and 1.5 phr sulfur loading.


2017 ◽  
Vol 886 ◽  
pp. 145-149 ◽  
Author(s):  
Ahmad Kusumaatmaja ◽  
Najmudin Fauji ◽  
Kuwat Triyana

Polysulfone (PSF)/polyacrylonitrile (PAN) membrane had been developed by electrospinning method to investigate the ability of membrane for oil/water separation. The ratios of PSF to PAN were varied as 7:3, 5:5, 3:7, and 0:10 in 10wt% of total concentration. In general, ratio PSF to PAN 5:5 gave the best morphology with smooth nanofibers and good permeability. The results show that increase of PAN concentration leads to the increase of water permeability. The addition of PAN into PSF changed the membrane surface properties from hydrophobic to hydrophilic. PAN/PSF membrane with a ratio of PSF to PAN as 5:5, 3:7, and 0:10 were showing high resistant for oil. It suggested that PSF/PAN membrane with the large composition of PAN could be used as water/oil separator.


Sign in / Sign up

Export Citation Format

Share Document