scholarly journals Effect of Laser Cladding Stellite 6-Cr3C2-WS2 Self-Lubricating Composite Coating on Wear Resistance and Microstructure of H13

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 785 ◽  
Author(s):  
Wei Chen ◽  
Bo Liu ◽  
Long Chen ◽  
Jiangping Xu ◽  
Yingxia Zhu

In order to prevent the wear failure of the hot-working die, the composite coatings of Stellite 6-Cr3C2-WS2 was fabricated on H13 hot-working die steel by laser cladding. The composite coating was prepared through the in-situ generation technology, that can give H13 the ability of self-lubricating at the working temperature (about 200 °C). The effect of the various WS2 percentages on the properties of the coating was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microhardness test, friction and wear test. In addition, the phase constitutions, microstructures and wear properties were also investigated systematically. The obtained hardness of the cladding coating is approximately 2.5 times higher than the substrate because of the constituents of γ-(Fe, Co)/Cr7C3 eutectic colony, (Cr, W)C carbide and dendritic crystals in the coating. Furthermore, the friction coefficient decreases to 70% of the substrate due to the CrS self-lubricating phase. The analyses results suggest that an 85% Stellite 6-10% Cr3C2-5% WS2 composite coating has excellent material properties.

2021 ◽  
Author(s):  
Linlin ZHANG ◽  
Dawei ZHANG

Ni-Co-W composite coatings modified by different contents of Co-based alloy powder in the Ni-based alloy with 35 wt.% WC (Ni35WC) were deposited on stainless steel by laser cladding. The influence of compositional and microstructural modification on the wear properties has been comparatively investigated by XRD, SEM, and EDS techniques. It was found that the austenite dendrites in the modified coating adding 50 wt.% Co-based alloy were refined and a lot of Cr23C6 or M23(C, B)6 compounds with fine lamellar feature were formed around austenitic grain boundaries or in the intergranular regions. The contribution of element Co to the modification of Ni35WC coating is that it cannot only promote the formation of more hard compounds to refine austenite grains, but also refine the size of precipitates, and change the phase type of eutectic structure as a result of disappeared Cr boride brittle phases. A noticeable improvement in wear resistance is obtained in the Ni35WC coating with 50 wt.% Co-based alloy, which makes the wear rate decreased by about 53 % and 30% by comparison to that of the substrate and the Ni35WC coating, respectively. It is suggested that the improvement is closely related to the composite coating being strengthened owing to the increase of coating hardness, formation of a fine-grained microstructure caused by Co, and fine hard precipitate phases in the eutectic structure.


2012 ◽  
Vol 217-219 ◽  
pp. 1354-1358
Author(s):  
Jin Nan Zhao ◽  
Jing Liang ◽  
Sui Yuan Chen ◽  
Chang Sheng Liu ◽  
Feng Hua Liu

Ti-6Al-4V, C and TiB2 powders (71.5%Ti-6Al-4V+ 26.2%TiB2+2.3%C in wt. %) were prepasted and then laser clad on Ti-6Al-4V substrates. Laser cladding was carried out with a Nd:YAG pulse laser with the parameters of defocus length 15mm, pulse frequency 15Hz, scanning speed 2-4mm/s, electric current 200-240A. Microstructure and phases were analyzed with the Optical Microscopy(OM), Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD). Laser cladding layers with smooth surfaces, good metallurgical bonding with no cracks and pores were formed. The average thickness of the coatings is approximately 80μm. Reactions among Ti, C and TiB2 in the laser molten pool cause in-situ synthesis of TiB, TiB2 and TiC reinforcements. The average microhardness is 836HV, which is more than twice that of the Ti-6Al-4V substrate (320HV). Friction coefficients of the cladding coatings fluctuate between 0.26-0.3. Laser cladding specimen with powder mixture of 71.5%Ti-6Al-4V+ 26.2%TiB2+2.3%C (weight loss 0.0007g after sliding 245m) possesses better wear property than that of the specimen with powder mixture of 90%Ti-6Al-4V+ 10%B4C (weight loss 0.0068g).


2012 ◽  
Vol 19 (05) ◽  
pp. 1250052 ◽  
Author(s):  
X. H. WANG ◽  
M. ZHANG ◽  
B. S. DU ◽  
S. LI

Iron-based composite coatings reinforced with TiB2–TiC multiple ceramic have been fabricated from a precursor of B4C , TiO2 and Al powders by laser cladding. The effect of TiO2 and Al on the microstructure and wear properties of the coatings was investigated. The results showed that the volume fraction, type and size of the reinforcements were influenced by the content of TiO2 and Al . TiB2 and TiC were evenly distributed in the coating; however, most of Al2O3 were ejected from the coatings, only few of them retained in the coating acting as nucleation core of reinforcement or inclusion. The microhardness and wear resistance of the coatings were improved, whereas the friction coefficients of the coatings were considerably lower than that of substrate.


2017 ◽  
Vol 24 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Hongxia Zhang ◽  
Huijun Yu ◽  
Chuanzhong Chen

AbstractThe composite coatings were fabricated by laser cladding Ni60A/B4C pre-placed powders on the surface of Ti-6Al-4V alloy for improving wear resistance and hardness of the substrate. In this research, the composite coatings were studied by means of X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The sliding wear tests were performed using MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the laser cladding coating and Ti-6Al-4V substrate. The composite coatings were mainly composed of the matrix of γ-Ni and a little Ni3Ti and the reinforcements of TiB2, TiC and CrB. The hardness of the sample of Ni60A-5B4C was approximately 2.5–3.5 times that of the Ti-6Al-4V substrate. The hardness of the sample of Ni60A-10B4C was 30% higher than that of sample 1. The wear resistance of samples 1 and 2 were 11 times and 10 times that of the substrate, respectively.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550044 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN

The composite coatings were fabricated by laser cladding Al / TiN pre-placed powders on Ti –6 Al –4 V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β- Ti  ( Al ) and the reinforcements of titanium nitride ( TiN ), Ti 3 Al , TiAl and Al 3 Ti . The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti –6 Al –4 V substrate. And the wear resistance of sample 4 was four times of the substrate.


2010 ◽  
Vol 97-101 ◽  
pp. 1510-1513
Author(s):  
Jun Zhou ◽  
Fa Qin Xie ◽  
Yong Quan Li ◽  
Xiang Qing Wu

Co-based composite coatings reinforced by TiN particles were fabricated on Ni-based superalloy substrate by using a 5 kW CO2 laser. The microstructures and phases constitution of the composite coating were studied by means of optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microhardness and wear resistance of the coating were also examined. The results showed that the composite coating was mainly composed of γ-Co, TiN, TiC, (Cr, W)23C6 and Co3Ti. And different solidification morphologies, such as planar, cellular and dendrite, were obtained. Structural transformations were attributed to the temperature gradient and solidification rate in metal-melting region. It was found that the microhardness of the composite coating was enhanced prominently as compared to the substrate region, which should be due to the undissolved TiN and other new complicated phase. Friction and wear tests without lubrication showed that the addition of TiN particles into Co-based coating can improve its wear resistance significantly without evidently increasing the friction coefficient of coating.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 747
Author(s):  
Kaiwei Liu ◽  
Hua Yan ◽  
Peilei Zhang ◽  
Jian Zhao ◽  
Zhishui Yu ◽  
...  

TiN and WS2 + hBN reinforced Ni-based alloy self-lubricating composite coatings were fabricated on TC4 alloy by laser cladding using TiN, NiCrBSi, WS2, and hBN powder mixtures. Energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and optical microscopy (OM) were adopted to investigate the microstructure. The wear behaviors of the self-lubricating composite coatings were evaluated under large contact load in room temperature, dry-sliding wear-test conditions. Results indicated that the phases of the coatings mainly include γ-Ni, TiN, TiNi, TiW, WS2, and TiS mixtures. The average microhardness of the composite coating is 2.3–2.7 times that of the TC4 matrix. Laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coatings revealed a higher wear resistance and lower friction coefficient than those of the TC4 alloy substrate. The friction coefficient (COF) of the coatings was oscillating around approximately 0.3458 due to the addition of self-lubricant WS2 + hBN and hard reinforcement TiN. The wear behaviors testing showed that the wear resistance of the as-received TC4 was significantly improved by a laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coating.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350034 ◽  
Author(s):  
BAOSHUAI DU

Laser cladding was applied to deposit in situ Fe - Ti - B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe - Ti - B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB 2 and Fe 2 B can be synthesized in the Fe - Ti - B coatings. The amount of TiB 2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe - Ti - B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.


2005 ◽  
Vol 12 (02) ◽  
pp. 161-165 ◽  
Author(s):  
Y. S. TIAN ◽  
C. Z. CHEN ◽  
D. Y. WANG ◽  
Q. H. HUO ◽  
T. Q. LEI

Composite coatings are fabricated by laser cladding of titanium alloy Ti-6Al-4V with graphite and silicon mixed powders. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) indicate that the coatings mainly consist of pre-eutectic TiC and eutectic Ti 5 Si 3 compounds. Test results show that the coatings exhibit a higher microhardness and a lower friction coefficient compared with the as-received sample. EPMA micrographs show that the compounds' morphology in the top zone of the coatings is different from that in the transitional zone.


2013 ◽  
Vol 652-654 ◽  
pp. 1780-1786
Author(s):  
Zhong Li Zhao ◽  
Kai Fang Dang ◽  
Jun Hai Liu ◽  
Da Ming Wu ◽  
Ying Liu ◽  
...  

The TiC/Fe-based composite coating was fabricated by plasma transferred arc (PTA) weld-surfacing process on substrate of Q235 steel with the mixture of ferrotitanium, ferrochromium and ferrosilicium powders. The microstructure and wear properties of the coating were investigated by means of X-ray diffraction (XRD), scanning electron micrograph (SEM), energy dispersive X-ray analysis (EDS), microhardness test and wear test. The results show that the coating consists of TiC, (Cr,Fe)7C3 and austenite. The composite coating is metallurgically bonded to the Q235 steel substrate. TiC particles formed by PTA weld-surfacing process presented cubic or “dendrite flower-like” morphology. The wear-resisting property of the coating was greatly improved compared with the substrate. The coating has excellent adhesive wear and grinding abrasion resisting force.


Sign in / Sign up

Export Citation Format

Share Document