scholarly journals On the Surface Quality of CFRTP/Steel Hybrid Structures Machined by AWJM

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 983
Author(s):  
Fermin Bañon ◽  
Bartolome Simonet ◽  
Alejandro Sambruno ◽  
Moises Batista ◽  
Jorge Salguero

The joining of dissimilar materials in a hybrid structure is a line of research of great interest at present. Nevertheless, the machining of materials with different machinability requires specific processes capable of minimizing defectology in both materials and achieving a correct surface finish in terms of functional performance. In this article, abrasive water jet machining of a hybrid carbon fiber-reinforced thermoplastics (CFRTP)/Steel structure and the generated surface finish are studied. A parametric study in two stacking configurations (CFRTP/Steel and Steel/CFRTP) has been established in order to determine the range of cutting parameters that generates the lowest values in terms of arithmetic mean roughness (Ra) and maximum profile height (Rz). The percentage contribution of each cutting parameter has been identified through an ANOVA analysis for each material and stacking configuration. A combination of 420 MPa hydraulic pressure with an abrasive mass flow of 385 g/min and a travel speed of 50 mm/min offers the lowest Ra and Rz values in the CFRTP/Steel configuration. The stacking order is a determining factor, obtaining a better surface quality in a CFRTP/Steel stack. Finally, a series of contour diagrams relating surface quality to machining conditions have been obtained.

2021 ◽  
Vol 15 (4) ◽  
pp. 512-520
Author(s):  
Ryota Uchiyama ◽  
Yuki Inoue ◽  
Fumihiro Uchiyama ◽  
Takashi Matsumura ◽  
◽  
...  

High quality surfaces with transparency are required for manufacturing of plastic products. In cutting of polymer materials, surface quality is sometimes deteriorated by tarnish and/or unequal spaces of area on a surface. The cutting parameters should be determined through understanding of surface finish characteristics. This paper presents an optimization approach in milling of polycarbonate with polycrystal diamond tools in terms of the surface finish. Surfaces are finished with changing the feed rate and the clearance angle of the tool. The surface finishes, then, were observed to classify the deterioration type into welding, adhesion, and the unequal space of cutter marks with measurement of the surface profiles. The measured surface roughnesses are decomposed into the theoretical/geometrical term and the irregular term induced by the thermal and the dynamic effects. A map is presented to characterize the irregular term for the feed rates and the clearance angles. Because the surface roughnesses are measured at discrete sets of the cutting parameters in the actual cutting tests, the process design cannot be conducted to optimize the operation parameters. Therefore, a neural network is applied to associate the cutting parameters with the irregular term in the map. An approach is presented to determine the number of hidden nodes/units in the design of the neural network. Three prominent areas of welding, adhesion, and unequal spaces of the cutter marks, appear in the map of irregular roughness. The map of the surface roughness is made to optimize the cutting process. The applicable feed rates and clearance angles are determined for the tolerable surface roughnesses. The gradient information in the map is used to evaluate the stability/robustness of the surface quality for changing the parameters. The optimum parameters were determined to minimize the gradient information in the applicable feed rates and clearance angles.


2020 ◽  
Vol 15 ◽  
Author(s):  
Lei Li ◽  
Yujun Cai ◽  
Guohe Li ◽  
Meng Liu

Background: As an important method of remanufacturing, laser cladding can be used to obtain the parts with specific shapes by stacking materials layer by layer. The formation mechanism of laser cladding determines the “Staircase effect”, which makes the surface quality can hardly meet the dimensional accuracy of the parts. Therefore, the subsequent machining must be performed to improve the dimensional accuracy and surface quality of cladding parts. Methods: In this paper, chip formation, cutting force, cutting temperature, tool wear, surface quality, and optimization of cutting parameters in the subsequent cutting of laser cladding layer are analyzed. Scholars have expounded and studied these five aspects but the cutting mechanism of laser cladding need further research. Results: The characteristics of cladding layer are similar to that of difficult to machine materials, and the change of parameters has a significant impact on the cutting performance. Conclusion: The research status of subsequent machining of cladding layers is summarized, mainly from the aspects of chip formation, cutting force, cutting temperature, tool wear, surface quality, and cutting parameters optimization. Besides, the existing problems and further developments of subsequent machining of cladding layers are pointed out. The efforts are helpful to promote the development and application of laser cladding remanufacturing technology.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Author(s):  
Barnabás Zoltán Balázs ◽  
Márton Takács

Micro-milling is one of the most essential technologies to produce micro components, but due to the size effect, it has many special characteristics and challenges. The process can be characterised by strong vibrations, relatively large run-out and tool deformation, which directly affects the quality of the machined surface. This paper deals with a detailed investigation of the influence of cutting parameters on surface roughness and on the special characteristics of micro-milled surfaces. Several systematic series of experiments were carried out and analysed in detail. A five-axis micromachining centre and a two fluted, coated carbide micro-milling tool with a diameter of 500 µm were used for the tests. The experiments were conducted on AISI H13 hot-work tool steel and Böhler M303 martensitic corrosion resistance steel with a hardness of 50 HRC in order to gain relevant information of machining characteristics of potential materials of micro-injection moulding tools. The effect of the cutting parameters on the surface quality and on the ratio of Rz/ Ra was investigated in a comprehensive cutting parameter range. ANOVA was used for the statistical evaluation. A novel method is presented, which allows a detailed analysis of the surface profile and repetitions, and identify the frequencies that create the characteristic profile of the surface. The procedure establishes a connection between the frequencies obtained during the analysis of dynamics (forces, vibrations) of the micro-milling process and the characterising repetitions and frequencies of the surface.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


2018 ◽  
Vol 178 ◽  
pp. 01009
Author(s):  
Manuela-Roxana Dijmărescu ◽  
Ioan-Cristian Tarbă ◽  
Maria-Cristina Dijmărescu ◽  
Vlad Gheorghiţă

Due to their excellent biocompatibility and mechanical properties, the use of Co-Cr based alloys in medical applications has increased substantially. An important characteristic of the medical implants is their surface quality, this being a significant constraint when machining this kind of products. The aim of this paper is to present a research conducted in order to determine and expose the influence of turning cutting parameters on the surface roughness of a CoCrWNi alloy.


2021 ◽  
Author(s):  
Sonia Ezeddini ◽  
Wajdi Rajhi ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar ◽  
Sahbi Ben Salem

Abstract Ti-6242 is a super alloy which exhibits the best creep resistance among available titanium alloys and is widely used in the manufacture by WEDM of aircraft engine turbomachinery components. However, the final quality of wire EDMed surface is a great challenge as it is affected by various factors that need optimization for surface integrity and machine efficiency improvement. The aim of this study is to investigate the effect of a set of cutting process parameters such as pulse on time (Ton), servo voltage (U), feed rate (S) and flushing pressure (p) on surface roughness (SR) when machining Ti-6242 super alloy by WEDM process using a brass tool electrode and deionized water as a dielectric fluid. WEDM experiments were conducted, and SR (Ra) measurement was carried out using a 3D optical surface roughness-meter (3D–SurfaScan). As a tool to optimize cutting parameters for SR improvement, Taguchi's signal‐to‐noise ratio (S/N) approach was applied using L9 (3^4) orthogonal array and Lower-The-Better (LTB) criteria. Substantially, the findings from current investigation suggest the application of the values 0.9 µs, 100V, 29 mm/min, and 60 bar for Ton, U, S and p cutting parameters, respectively, for producing a good surface finish quality. Percent contributions of the machining parameters on SR (Ra) assessed based on ANOVA analysis are 62.94%, 20.84%, 11.46% and 4.74% for U, S, Ton and p, respectively. Subsequently, accurate predictive model for SR (Ra) is established based on response surface analysis (RSA). The contour plots for SR (Ra) indicate that when flushing pressure p converges to a critical value (80 bar), a poor-quality surface finish is highly expected with the excessive increase in U and S. Electron microscope scanning (SEM) observations have been performed on machined surface for a wide range of cutting parameters to characterize wire EDMed surface of Ti-6242. SEM micrographs indicate that the machined surface acquires a foamy structure and shows white layer and machining-induced damage that the characteristics are highly dependent on cutting parameters. At high servo-voltage, the decrease in pulse on time Ton and feed rate S results in a large decrease in overall machining-induced surface damage. Moreover, for high servo-voltage and feed rate levels, it has been observed that pulse on time could play a role of controlling the surface microcracks density. In fact, the use of a low pulse duration of cut combined with high servo-voltage and feed rate has been shown to inhibit surface microcracks formation giving the material surface a better resistance to cracking than at high pulse duration.


2000 ◽  
Vol 21 (4) ◽  
pp. 630-635 ◽  
Author(s):  
M. Neitzel ◽  
M. Blinzler ◽  
K. Edelmann ◽  
F. Hoecker

2011 ◽  
Vol 299-300 ◽  
pp. 1016-1019
Author(s):  
Tie Jun Li ◽  
Jing Tang ◽  
Li Jun Yan ◽  
Yang Wang

This paper presented the experiments of Nd:YAG pulsed laser cutting of titanium alloy, super-alloy and stainless steel sheet, and investigated the influences of different laser cutting parameters on the surface quality factors focusing surface morphology. In comparison with air-, argon- and nitrogen-assisted laser cutting, argon-assisted laser cutting comes with unaffected surface quality and is suitable for laser cutting with subsequent welding requirement. With analyzing the interaction between pulses overlapping rate and energy, the results show that medium pulse overlapping rate and lower pulse rate helps to improve the surface roughness with pulsed laser cutting. And the results would be beneficial to find optimum cutting parameters for good separation surface.


2015 ◽  
Vol 828-829 ◽  
pp. 62-68
Author(s):  
Khaled Abou-El-Hossein

Plastic optical components and lenses produced in mass quantities are usually manufactured using high-precision plastic injection technology. For that, high-precision plastic moulds with aluminium optical inserts made with extremely high dimension accuracy and high optical surface quality are used. Ultra-high precision single-point diamond turning have been successfully used in shaping optical mould inserts from various aluminium grades such as traditional 6061. However, extreme care should be taking when selecting machining parameters in order to produce optically valid surfaces before premature tool wear takes place especially when the machined optical materials has inadequate machining database. The current experimental study looks at the effect of cutting conditions on optical surfaces made from aluminium. The study embarks on helping establish some diamond machining database that helps engineers select the most favourable cutting parameters. The papers reports on the accuracy and surface finish quality received on an optical surface made on mould inserts from a newly developed aluminium alloy. Rapidly solidified aluminium (RSA) grades have been developed recently to address the various problems encountered when being cut by single-point diamond turning operation. The material is characterised by its extremely fine grained microstructure which helps extend the tool life and produce optical surfaces with nanometric surface finish. It is found the RSA grades can be successfully used to replace traditional optical aluminium grades when making optical surfaces. Surface finishes of as low as 10 nanometres and form accuracy of less than one micron can be achieved on RSA.


Sign in / Sign up

Export Citation Format

Share Document