scholarly journals Surface Pretreatment and Fabrication Technology of Braided Carbon Fiber Rope Aluminum Matrix Composite

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1212
Author(s):  
Jun Liang ◽  
Chunjing Wu ◽  
Hang Ping ◽  
Ming Wang ◽  
Weizhong Tang

Carbon fiber is mainly distributed in the shape of short fibers and continuous fiber bundles as the reinforcing phase in metal matrix composites, and it is seldom studied as braided rope shaped to reinforce the matrix. For this paper, the pretreatment and the surface metallization of the carbon fiber braided rope were studied. Besides, the casting experiments of aluminum-based carbon fiber braided rope composites were performed without external pressure. XPS analysis shows that the surface of the carbon fiber braided rope treated with ultrasonic degumming contains many hydrophilic oxygen-containing functional groups C-OH, C=O, COOH, etc., which can effectively improve the wettability between the carbon fiber braided rope and the aluminum matrix. SEM, EDS, and XRD were used to analyze the micromorphology and structure of the copper plating on the surface of carbon fiber braided ropes obtained from different pH plating solutions. When pH is 12, a continuous, uniform, and dense layer was formed on the surface of carbon fiber braided ropes. In addition, copper coating can effectively inhibit the formation of Al4C3 brittle phase. Finally, the mechanical properties results indicated that the tensile strength of the carbon fiber bundle and carbon fiber rope reinforced composite materials were 69 MPa and 83 MPa, respectively, indicating that the reinforcing effect of the carbon fiber rope is better than that of the carbon fiber bundle.

2016 ◽  
Vol 256 ◽  
pp. 81-87 ◽  
Author(s):  
Ju Fu Jiang ◽  
Ying Wang ◽  
Shou Jing Luo

Semisolid slurries of 7075 aluminum matrix composite reinforced with nano-sized SiC particles were fabricated by ultrasonic assisted semisolid stirring (UASS) method. Rheoforming and thixoforming of typical cylindrical parts were investigated. The results show that high-quality semisolid slurries with spheroidal solid grain of 38 µm were fabricated by UASS. The nano-sized SiC particles were dispersed uniformly due to transient cavitation and acoustic streaming of ultrasonic wave and high and controllable viscosity of semisolid slurry. Typical cylindrical composite parts with good surface quality and complete filling were rheoformed and thixoformed successfully. Ultimate tensile strength (UTS) of the rheoformed and thixoformed composite parts are enhanced due to addition of nano-sized SiC particles. However, elongation decreased as compared to those of the matrix parts. Maximum UTS of 550 MPa was achieved in the thixoformed composite part with T6 treatment. Increase of dislocation density around the reinforcement particles leads to improvement of the strength and wear resistance of the composite.


2017 ◽  
Vol 52 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Mohammad Senemar ◽  
Behzad Niroumand ◽  
Ali Maleki ◽  
Pradeep K Rohatgi

In this study, in situ aluminum matrix composites were synthesized through pyrolysis of high temperature vulcanization silicone in commercially pure aluminum melt. For this purpose, 1 to 4 wt% of high temperature vulcanization silicone was added to a vortex of molten aluminum at 750℃ and the resulting slurries were cast in steel dies. Microstructure, hardness, and tensile properties of the as-cast samples were examined at ambient and high temperatures. The results revealed the in situ formation and distribution of reinforcement particles in the matrix. Energy-dispersive X-ray analysis indicated that the formed reinforcement particles consisted of O and Si elements. This confirms the in situ reinforcement formation by pyrolysis of high temperature vulcanization silicone in the melt. The size of the in situ formed particles was mostly in the range of 200–2000 nm. It was shown that the composites synthesized by the addition of 4 wt% high temperature vulcanization had the highest mechanical properties both at ambient and high temperatures. Room temperature hardness, tensile strength, and yield strength of this sample were increased by about 50%, 23%, and 19% compared to the monolithic sample, respectively.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1006
Author(s):  
Sergei Galyshev

The process of the production of a CF/Al-wire by pulling carbon fibers through an aluminum melt has at least 15 parameters. The main parameters include the power of ultrasonic treatment, the time of contact of the fiber with the matrix melt, and the melt temperature. In addition, the presence of a barrier coating on the fiber surface and its thickness significantly affects the properties of the resulting material. The importance of these parameters is due to their direct effect on the chemical interaction between the aluminum matrix and the carbon fiber. This interaction leads to the formation of aluminum carbide, a hygroscopic, brittle phase that ultimately significantly reduces the strength of such composites. In this regard, limiting a chemical reaction at the matrix/fiber interface in the production of CF/Al composites is one of the main technological problems. The main goal of this work is to pragmatically elucidate the effect of the above parameters on the strength of CF/Al composites. It is shown that the strength of a CF/Al-wire can reach 2000 MPa.


2017 ◽  
Vol 898 ◽  
pp. 917-932 ◽  
Author(s):  
Yong Wang ◽  
Ji Xue Zhou ◽  
Kai Ming Cheng ◽  
Jian Hua Wu ◽  
Yuan Sheng Yang

Graphene with unique two-dimensional structure and excellent mechanical properties, is one of the most ideal reinforcements. With the increasing progress of aluminum matrix composites, graphene reinforced aluminum matrix composites have attracted great interests. This paper mainly reviews the latest progress on preparation of graphene reinforced aluminum matrix composites, and especially discusses the effective dispersion technique of graphene. Meanwhile, the microstructure and interfacial structure of graphene reinforced aluminum matrix composites are also emphasized and discussed. The results showed that graphene can significantly improve the mechanical properties of composites and refine the matrix grain. By controlling preparation parameters, the graphene agglomeration can be effectively solved, and the adverse interface reaction between graphene and substrate can be avoided. Finally, the current challenges and solutions of graphene reinforced aluminum matrix composites were presented.


2020 ◽  
Vol 988 ◽  
pp. 17-22
Author(s):  
Suryana ◽  
Indah Uswatun Hasanah ◽  
Muhammad Fikri Fadhillah ◽  
Yordan Valentino Putra

The effects of graphite and magnesium (Mg) addition on mechanical properties and microstructure of aluminum matrix composites (AMCs) have been investigated in this work. Aluminum alloy (ADC-12) was combined with graphite and Mg produced by stir casting. The effect of addition of graphite into the matrix has been studied with variation 2, 4 and 6 wt-% for each composite. The addition of Mg as wetting agent was introduced wit 0.4, 0.6 and 0.8 wt-% to promote wettability between ADC-12 and graphite. All composites were characterized both microstructures analysis and mechanical properties include tensile strength and hardness. The higher reinforcement content, the higher porosity formed, due to the tendency of de-wetting as well as particles agglomeration. One of the main intermetallic phase present evenly in aluminum matrix is Mg2Si. The addition of magnesium in the material that will form Mg2Si primary phases which have a high hardness value of these composites.


2015 ◽  
Vol 816 ◽  
pp. 3-8 ◽  
Author(s):  
Jun Jia Zhang ◽  
Shi Chao Liu ◽  
Hang Chen ◽  
Yi Ping Lu ◽  
Qiu Shi Chen ◽  
...  

Carbon fiber is mainly distributed in the shape of short fibers and unidirectional fibers as the reinforcing phase in metal matrix composites, and it is seldom studied as woven-cloth shaped to reinforce the matrix. In this paper, the pretreatment and the surface metallization of the woven carbon fiber were studied. Besides, the casting experiment without external pressure was carried out under the application of magnetic field. The result shows that when burning about 45mins at 500°C in the atmospheric environment, the pretreatment can achieve the best result according to differential thermal analysis and weight-time variation curve. Meanwhile the surface wettability between the carbon fiber and the matrix is greatly improved after the surface treatment and at the same time the reaction between the carbon fiber and molten aluminium alloy matrix is necessarily avoided, and it can consequently achieve an excellent bonding between the woven carbon fiber and aluminium alloy matrix. The application of magnetic field also provides magnetic force to promote the penetration of the molten matrix into the carbon fiber bundles.


2021 ◽  
Vol 5 (12) ◽  
pp. 307
Author(s):  
Yongbum Choi ◽  
Xuan Meng ◽  
Zhefeng Xu

A new fabrication process without preform manufacturing has been developed for carbon short fiber (CSF) reinforced various aluminum matrix composites. And their mechanical and thermal properties were evaluated. Electroless Ni plating was conducted on the CSF for improving wettability between the carbon fiber (CF) and aluminum. It was confirmed that pores in Ni plated CSF/Al and Al alloy matrix composites prepared by applied pressure, 0.8 MPa, had some imperfect infiltration regions between the CF/CF and CF/matrix in all composites. However, pores size in the region between the CF/CF and CF/matrix to use the A336 matrix was about 1 µm. This size is smaller than that of other aluminum-based composites. Vickers hardness of Ni plated CSF/A1070, A356 alloy, and A336 alloy composites were higher as compared to matrix. However, the A1070 pure aluminum matrix composite had the highest hardness improvement. The Ultimate tensile strength of the A1070 and A356 aluminum matrix composite was increased due to carbon fiber compared to only aluminum, but the Ultimate tensile strength of the A336 aluminum matrix composite was rather lowered due to the highest content of Si precipitate and large size of Al3Ni compounds. The Thermal Conductivity of Ni plated CSF/A1070 composite has the highest value (167.1 W·m−1·K−1) as compared to composites.


1994 ◽  
Vol 372 ◽  
Author(s):  
M. T. Kiser ◽  
M. He ◽  
B. Wuj ◽  
F. W. Zok

AbstractThe compressive deformation characteristics of hollow alumina microsphere reinforced aluminum matrix composites have been studied through both experiments and finite element analysis of unit cell models. Tests have been performed on composites containing around 50 volume percent of microspheres. The effects of the matrix flow stress and microsphere morphology (characterized by the ratio of wall thickness to radius) have been examined. The measured strength enhancement due to the hollow microspheres was found to be considerably less than that predicted by the FEM calculations; a result of microsphere cracking. Experiments have been conducted to document the progression of such damage following casting and mechanical deformation. The potential of this class of composite for impact energy absorption applications is also explored.


Sign in / Sign up

Export Citation Format

Share Document