Fabrication and Characterization of Aluminum Matrix Composite (AMCs) Reinforced Graphite by Stir Casting Method for Automotive Application

2020 ◽  
Vol 988 ◽  
pp. 17-22
Author(s):  
Suryana ◽  
Indah Uswatun Hasanah ◽  
Muhammad Fikri Fadhillah ◽  
Yordan Valentino Putra

The effects of graphite and magnesium (Mg) addition on mechanical properties and microstructure of aluminum matrix composites (AMCs) have been investigated in this work. Aluminum alloy (ADC-12) was combined with graphite and Mg produced by stir casting. The effect of addition of graphite into the matrix has been studied with variation 2, 4 and 6 wt-% for each composite. The addition of Mg as wetting agent was introduced wit 0.4, 0.6 and 0.8 wt-% to promote wettability between ADC-12 and graphite. All composites were characterized both microstructures analysis and mechanical properties include tensile strength and hardness. The higher reinforcement content, the higher porosity formed, due to the tendency of de-wetting as well as particles agglomeration. One of the main intermetallic phase present evenly in aluminum matrix is Mg2Si. The addition of magnesium in the material that will form Mg2Si primary phases which have a high hardness value of these composites.

2017 ◽  
Vol 898 ◽  
pp. 917-932 ◽  
Author(s):  
Yong Wang ◽  
Ji Xue Zhou ◽  
Kai Ming Cheng ◽  
Jian Hua Wu ◽  
Yuan Sheng Yang

Graphene with unique two-dimensional structure and excellent mechanical properties, is one of the most ideal reinforcements. With the increasing progress of aluminum matrix composites, graphene reinforced aluminum matrix composites have attracted great interests. This paper mainly reviews the latest progress on preparation of graphene reinforced aluminum matrix composites, and especially discusses the effective dispersion technique of graphene. Meanwhile, the microstructure and interfacial structure of graphene reinforced aluminum matrix composites are also emphasized and discussed. The results showed that graphene can significantly improve the mechanical properties of composites and refine the matrix grain. By controlling preparation parameters, the graphene agglomeration can be effectively solved, and the adverse interface reaction between graphene and substrate can be avoided. Finally, the current challenges and solutions of graphene reinforced aluminum matrix composites were presented.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2016 ◽  
Vol 256 ◽  
pp. 81-87 ◽  
Author(s):  
Ju Fu Jiang ◽  
Ying Wang ◽  
Shou Jing Luo

Semisolid slurries of 7075 aluminum matrix composite reinforced with nano-sized SiC particles were fabricated by ultrasonic assisted semisolid stirring (UASS) method. Rheoforming and thixoforming of typical cylindrical parts were investigated. The results show that high-quality semisolid slurries with spheroidal solid grain of 38 µm were fabricated by UASS. The nano-sized SiC particles were dispersed uniformly due to transient cavitation and acoustic streaming of ultrasonic wave and high and controllable viscosity of semisolid slurry. Typical cylindrical composite parts with good surface quality and complete filling were rheoformed and thixoformed successfully. Ultimate tensile strength (UTS) of the rheoformed and thixoformed composite parts are enhanced due to addition of nano-sized SiC particles. However, elongation decreased as compared to those of the matrix parts. Maximum UTS of 550 MPa was achieved in the thixoformed composite part with T6 treatment. Increase of dislocation density around the reinforcement particles leads to improvement of the strength and wear resistance of the composite.


2020 ◽  
Author(s):  
Zheng-Hua Guo ◽  
Qingjie Wu ◽  
Ning Li ◽  
Li-Hong Jiang ◽  
Wen He ◽  
...  

Abstract Graphene nanoplatelets (GNPs) reinforced 7075 aluminum (Al) nanocomposites were successfully synthesized using the powder metallurgy method. A novel method for optimizing interfacial bonding by coating titanium dioxide (TiO 2 ) on the surface of GNPs was proposed in this manuscript. The effects of GNPs on mechanical properties and microstructure of the aluminum matrix nanocomposites, both with and without TiO 2 coating layers, have been investigated. Experimental results showed that the corresponding mechanical properties of the nanocomposites were further improved when the GNPs have TiO 2 coating layers, compared with the addition of pure GNPs. The yield strength, ultimate tensile strength, and microhardness of the nanocomposites reinforced with TiO 2 -coated GNPs increased by 22.9%, 25.9%, and 20.1%, respectively, in comparison to those of the matrix. The further improvement of the mechanical properties could be attributed to the existence of the coating layer, which optimizes the interface bonding between the reinforcement and the matrix, thereby improving the effectiveness of load transfer.


2017 ◽  
Vol 52 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Mohammad Senemar ◽  
Behzad Niroumand ◽  
Ali Maleki ◽  
Pradeep K Rohatgi

In this study, in situ aluminum matrix composites were synthesized through pyrolysis of high temperature vulcanization silicone in commercially pure aluminum melt. For this purpose, 1 to 4 wt% of high temperature vulcanization silicone was added to a vortex of molten aluminum at 750℃ and the resulting slurries were cast in steel dies. Microstructure, hardness, and tensile properties of the as-cast samples were examined at ambient and high temperatures. The results revealed the in situ formation and distribution of reinforcement particles in the matrix. Energy-dispersive X-ray analysis indicated that the formed reinforcement particles consisted of O and Si elements. This confirms the in situ reinforcement formation by pyrolysis of high temperature vulcanization silicone in the melt. The size of the in situ formed particles was mostly in the range of 200–2000 nm. It was shown that the composites synthesized by the addition of 4 wt% high temperature vulcanization had the highest mechanical properties both at ambient and high temperatures. Room temperature hardness, tensile strength, and yield strength of this sample were increased by about 50%, 23%, and 19% compared to the monolithic sample, respectively.


2011 ◽  
Vol 87 ◽  
pp. 38-42
Author(s):  
Jin Xiang Wang ◽  
Rui Jin Zhao ◽  
Xiao Li Zhang

The metallic glass particles reinforced aluminum matrix composites without obvious defects were obtained successfully by explosive compaction of mixed powders. The quasi-static compressive mechanical properties of the composites with the reinforcement matrix mass fraction 10%, 15% and 20% respectively were researched recur to universal testing machine of Instron 3367 and self-consistent theory. Finally, reinforcement mechanism of the metallic glass particles on the matrix was analyzed by numerical simulation recur to LS-DYNA program. The results show that the mechanical properties obtained by self-consistent theory are well accord with the experimental results; compared with pure aluminum, the yield stress of the composites with metallic glass particles reinforcement of the mass fraction 20% enhances 46.8 percent; the main reinforcement mechanism is the amorphous particles can undertake higher loading, the combined quality of the reinforcement particles with the matrix and the distribute uniformity of the reinforcement particles are important factors which will affect the reinforcement effects.


Author(s):  
L. O. Mudashiru ◽  
I. A. Babatunde ◽  
S. O. Adetola ◽  
O. I. Kolapo

Stir casting is an economical process for the production of aluminum matrix composites. There are many parameters in this process, which affect the final microstructure and mechanical properties of the composites. In this study, micron-sized SiC and Gr particles were used as reinforcement to fabricate Al-SiC/Gr composites at holding temperature of 700 ± 5 °C for 5 min at 350 rev/min stirring speed. The evaluation of the mechanical properties of the composites show improvement compared with pure aluminum-matrix. The Scanning Electron Microscope (SEM) of the as-cast composites shows that the vortex formations within the melt eliminates the agglomeration of the particles and improve the wettability phenomenon.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 230
Author(s):  
Mekala Chinababu ◽  
Nandivelegu Naga Krishna ◽  
Katakam Sivaprasad ◽  
Konda Gokuldoss Prashanth ◽  
Eluri Bhaskara Rao

Aluminum matrix composites reinforced by CoCrFeMnNi high entropy alloy (HEA) particulates were fabricated using the stir casting process. The as-cast specimens were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The results indicated that flake-like silicon particles and HEA particles were distributed uniformly in the aluminum matrix. TEM micrographs revealed the presence of both the matrix and reinforcement phases, and no intermetallic phases were formed at the interface of the matrix and reinforcement phases. The mechanical properties of hardness and tensile strength increased with an increase in the HEA content. The Al 6063–5 wt.% HEA composite had a ultimate tensile strength (UTS) of approximately 197 MPa with a reasonable ductility (around 4.05%). The LM25–5 wt.% HEA composite had a UTS of approximately 195 Mpa. However, the percent elongation decreased to roughly 3.80%. When the reinforcement content increased to 10 wt.% in the LM25 composite, the UTS reached 210 MPpa, and the elongation was confined to roughly 3.40%. The fracture morphology changed from dimple structures to cleavage planes on the fracture surface with HEA weight percentage enhancement. The LM25 alloy reinforced with HEA particles showed enhanced mechanical strength without a significant loss of ductility; this composite may find application in marine and ship building industries.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Yulius Eka Agung

Aluminum Matrix Composites (AMC) reinforced montmorillonite (MMT) was performed using cationic surfactant , Artificial Aging and stir casting method. The content of MMT as a filler is 3%wt. Characterization were performed using Xray Difractometer, ultrasonic testing, SEM, and Hardness Vickers. The results show increase in crystallographic parameter, decrease in density, shiffting in XRD pattern and increase in hardness.Keywords: metal, composite, matrix, aluminum, AMC, MMC, organoclay, heat treatment MMT, artificial aging,stir casting, automotive


Sign in / Sign up

Export Citation Format

Share Document