scholarly journals Microstructures and Mechanical Properties of Precipitation-Hardenable Magnesium–Silver–Calcium Alloy Sheets

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1632
Author(s):  
Mingzhe Bian ◽  
Xinsheng Huang ◽  
Yasumasa Chino

Precipitation hardening provides one of the most common strengthening mechanisms for magnesium (Mg) alloys. Here, we report a new precipitation-hardenable Mg sheet alloy based on the magnesium–silver–calcium system. In a solution treated condition (T4), the strength of Mg–xAg–0.1Ca alloys is enhanced with increasing the Ag content from 1.5 wt.% to 12 wt.%. The Mg–12Ag–0.1Ca (wt.%) alloy sheet shows moderate tensile yield strengths of 193 MPa, 130 MPa, 117 MPa along the rolling direction (RD), 45° and transverse direction (TD) in the T4-treated condition. Subsequent artificial aging at 170 °C for 336 h (T6) increases the tensile yield strengths to 236 MPa, 163 MPa and 143 MPa along the RD, 45° and TD, respectively. This improvement in the tensile yield strength by the T6 treatment can be ascribed to the formation of AgMg4 precipitates lying on the {112¯0}ɑ and pyramidal planes. Our finding is expected to stimulate the development of precipitation-hardenable Mg–Ag-based wrought alloys with high strength.

Alloy Digest ◽  
1961 ◽  
Vol 10 (10) ◽  

Abstract MST 431 is an alpha-beta type sheet alloy presently being supplied in the solution treated, solution treated and aged, and annealed conditions. Its principal advantage is good formability in the solution treated condition with subsequent high strength capability through an aging treatment. Properties indicate good strength and thermal stability for sheet applications up to 800 F for long times. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-30. Producer or source: Reactive Metals Corporation.


Alloy Digest ◽  
2004 ◽  
Vol 53 (7) ◽  

Abstract Allvac 38-644 is a metastable beta titanium alloy known for its ductility in the solution treated condition and its high strength and ductility in the solution treated and aged condition. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: TI-134. Producer or source: Allvac Metals Company.


Alloy Digest ◽  
1992 ◽  
Vol 41 (11) ◽  

Abstract TIMETAL 15-3 is a metastable beta titanium alloy that offers substantial weight reductions over other engineering materials. In the solution treated condition, it has excellent cold formability; in the aged condition, it has high strength. TIMETAL 15-3 is usually acceptable for use at temperatures up to 550 F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on forming and heat treating. Filing Code: Ti-101. Producer or source: Titanium Metals Corporation (Timet).


Alloy Digest ◽  
2005 ◽  
Vol 54 (4) ◽  

Abstract Mar-X is a precipitation-hardening, stainless steel with excellent corrosion resistance for both atmospheric and chemical attack. The heat response characteristics of this grade provide especially good welding characteristics. Absence of hardening in the weld heat-affected zone (HAZ) offers improved blending characteristics and reduced cracking potential in welded areas. The material is supplied in the solution-treated condition with a hardness of approximately 321 HB (34 HRC). It may be age hardened with a simple thermal treatment to a hardness of 40+ HRC. This datasheet provides information on composition, physical properties, and hardness. It also includes information on heat treating, machining, joining, and surface treatment. Filing Code: SS-922. Producer or source: A. Finkl & Sons Company.


2010 ◽  
Vol 638-642 ◽  
pp. 1439-1444
Author(s):  
Masuo Hagiwara ◽  
Tomoyuki Kitaura

The grain sizes of two kinds of orthorhombic alloys, namely (O+B2) Ti-22Al-11Nb-2Mo -1Fe and (O+2) Ti-27.5Al-13Nb have been successfully reduced by the addition of trace boron (B) (less than 0.12 wt.%). For example, the grain size in the B2 solution-treated condition was reduced from 1 mm to 80 m by the addition of 0.05% B for both alloys. The tensile elongation of Ti-22Al-11Nb-2Mo-1Fe at room temperature and 650C was increased from 0.3% to 4.3%, and from 8.2% to 30.3%, respectively, by the addition of 0.10% B. Ti-27.5Al-13Nb also showed an improved room temperature ductility by the minor B addition.


Alloy Digest ◽  
1982 ◽  
Vol 31 (1) ◽  

Abstract TECHALLOY 17-7 PH is a precipitation-hardenable high-strength stainless steel with excellent fatigue properties, good resistance to corrosion, minimum distortion on heat treatment and excellent spring characteristics. Its highest tensile strength and hardness are produced by starting with soft, solution-treated (annealed) material, cold working and then precipitation hardening at 900 F (Condition CH900); in this condition its elastic properties are similar to the best alloy spring steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-399. Producer or source: Techalloy Company Inc..


2021 ◽  
Vol 1016 ◽  
pp. 465-469
Author(s):  
Mohamed Abdel-Hady Gepreel ◽  
Mitsuo Niinomi

The development of new low-cost alloys composed of common elements that show high biocompatibility and mechanical properties matching with human bone is the target of many researches recently. Design and controlling the mechanical properties of newly developed set of Ti-xFe-3Zr-yNb (x=3-8 & y=2-3, at.%) low-cost alloys through applying different thermomechanical treatments is the aim of this work. Fe-content in the present designed alloys is changing in the range 3 to 8 at.%. The hardness and Young's modulus of the alloys were measured for the alloys in the solution treated, hot rolled and subsequent ageing at 400 °C and 550 °C. The phases separation and hence hardness of the aged alloys at 400 °C and 550 °C are highly dependent on the Fe-content in the alloy. The Young's modulus of the alloys is also changing with the Fe-content and heat treatment, where lowest modulus (~80GPa) is shown in the Ti-5Fe-3Zr-3Nb alloy in the solution treated condition.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2507 ◽  
Author(s):  
Bo Song ◽  
Jia She ◽  
Ning Guo ◽  
Risheng Qiu ◽  
Hucheng Pan ◽  
...  

Regulating precipitates is still an important issue in the development of high-strength Mg alloys, due to it determining the precipitation hardening effect. Cold deformation, as a simple and low-cost method, can remarkably influence the precipitate features. It is found that pre-cold deformation before aging can be utilized to enhance the precipitation hardening effect of Mg alloys. Moreover, post-deformation after aging could be an effective method to regulate precipitation orientation. In this review, recent research on the regulation of precipitation behavior by cold deformation in Mg-Al, Mg-Zn, and Mg-RE (RE: rare-earth elements) alloy systems was critically reviewed. The changes in precipitate features and mechanical properties of peak-aged Mg alloys via cold deformation were summarized. The corresponding strengthening mechanisms were also discussed. Finally, further research directions in this field were proposed.


2006 ◽  
Vol 503-504 ◽  
pp. 107-112 ◽  
Author(s):  
Bert Verlinden ◽  
M. Popović

Two Aluminium alloys, type AA5182 and AA5182+1.2wt% Cu, have been studied. The second alloy in solution treated condition is 18% stronger than the first one. During ageing at 150°C or 200°C it shows a characteristic fast increase in yield strength during the first minutes of ageing, followed by a 'plateau'. Both materials have been deformed in an ECAP die (4 and 8 passes) at 200°C and the microstructure, hardness and mechanical properties in compression at room temperature have been investigated. Although in none of the two materials a true sub-micron grain size was obtained at 200°C, a fair combination of strength and strain hardening was observed. The AA5182+Cu alloy, when ECAP’ed after a solution treatment and quenching, shows an increase in strength of about 20% compared to the AA5182 reference alloy. A post-ECAP annealing at 200°C does not lead to a further increase in hardness or strength. An analysis of the substructure and the mechanical properties during ECAP led to the conclusion that the precipitates formed during ECAP at 200°C do not directly contribute to the higher strength of alloy AA5182+Cu, but they contribute indirectly by slowing down the recovery.


Sign in / Sign up

Export Citation Format

Share Document