Influence of Cu on the Mechanical Properties of an Al-4.4wt%Mg Alloy after ECAP

2006 ◽  
Vol 503-504 ◽  
pp. 107-112 ◽  
Author(s):  
Bert Verlinden ◽  
M. Popović

Two Aluminium alloys, type AA5182 and AA5182+1.2wt% Cu, have been studied. The second alloy in solution treated condition is 18% stronger than the first one. During ageing at 150°C or 200°C it shows a characteristic fast increase in yield strength during the first minutes of ageing, followed by a 'plateau'. Both materials have been deformed in an ECAP die (4 and 8 passes) at 200°C and the microstructure, hardness and mechanical properties in compression at room temperature have been investigated. Although in none of the two materials a true sub-micron grain size was obtained at 200°C, a fair combination of strength and strain hardening was observed. The AA5182+Cu alloy, when ECAP’ed after a solution treatment and quenching, shows an increase in strength of about 20% compared to the AA5182 reference alloy. A post-ECAP annealing at 200°C does not lead to a further increase in hardness or strength. An analysis of the substructure and the mechanical properties during ECAP led to the conclusion that the precipitates formed during ECAP at 200°C do not directly contribute to the higher strength of alloy AA5182+Cu, but they contribute indirectly by slowing down the recovery.

2010 ◽  
Vol 638-642 ◽  
pp. 1439-1444
Author(s):  
Masuo Hagiwara ◽  
Tomoyuki Kitaura

The grain sizes of two kinds of orthorhombic alloys, namely (O+B2) Ti-22Al-11Nb-2Mo -1Fe and (O+2) Ti-27.5Al-13Nb have been successfully reduced by the addition of trace boron (B) (less than 0.12 wt.%). For example, the grain size in the B2 solution-treated condition was reduced from 1 mm to 80 m by the addition of 0.05% B for both alloys. The tensile elongation of Ti-22Al-11Nb-2Mo-1Fe at room temperature and 650C was increased from 0.3% to 4.3%, and from 8.2% to 30.3%, respectively, by the addition of 0.10% B. Ti-27.5Al-13Nb also showed an improved room temperature ductility by the minor B addition.


2021 ◽  
Vol 1016 ◽  
pp. 465-469
Author(s):  
Mohamed Abdel-Hady Gepreel ◽  
Mitsuo Niinomi

The development of new low-cost alloys composed of common elements that show high biocompatibility and mechanical properties matching with human bone is the target of many researches recently. Design and controlling the mechanical properties of newly developed set of Ti-xFe-3Zr-yNb (x=3-8 & y=2-3, at.%) low-cost alloys through applying different thermomechanical treatments is the aim of this work. Fe-content in the present designed alloys is changing in the range 3 to 8 at.%. The hardness and Young's modulus of the alloys were measured for the alloys in the solution treated, hot rolled and subsequent ageing at 400 °C and 550 °C. The phases separation and hence hardness of the aged alloys at 400 °C and 550 °C are highly dependent on the Fe-content in the alloy. The Young's modulus of the alloys is also changing with the Fe-content and heat treatment, where lowest modulus (~80GPa) is shown in the Ti-5Fe-3Zr-3Nb alloy in the solution treated condition.


2012 ◽  
Vol 482-484 ◽  
pp. 1530-1533
Author(s):  
Ming Li Huang ◽  
Hua Ying Li ◽  
Hua Ding

In the present work, mechanical properties and microstructures of hot-rolled and solution-treated Fe-26Mn-6Al-1C steel (6Al steel) were investigated. Tensile tests were carried out at room temperature. The samples were characterized by using XRD, OM, SEM and TEM. The results suggested that the microstructure of the hot rolled 6Al steel was fully austenitic. After solution treatment and deformation, the microstructure was still single austenite. With the increase of the solution treatment temperatures, the strength decreased and the elongation increased. After solution treated at 1100°C for 1h, the yield strength, ultimate tensile strength and elongation were 378MPa, 756MPa and 57%.


Alloy Digest ◽  
1983 ◽  
Vol 32 (10) ◽  

Abstract UNILOY 15-5 can be annealed (solution treated) to produce a martensite-austenite mixture and then aged to various levels of hardness and strength. It offers a broad range of mechanical properties. It is consumable remelted to improve cleanliness and mechanical properties. Normally, bars are supplied solution-treated (Condition A), machined very near to the finished dimensions and then age hardened. The many applications of Uniloy 15-5 include valves and fittings, gears, shafting, springs, and bearings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-434. Producer or source: Cyclops.


2005 ◽  
Vol 488-489 ◽  
pp. 629-632 ◽  
Author(s):  
Qu Dong Wang ◽  
Yongjun Chen ◽  
Jianguo Peng ◽  
Man Ping Liu ◽  
Wen Jiang Ding ◽  
...  

Microstructure and mechanical properties of AM50+xTi (x=0,0.01,0.1wt%) magnesium alloys extruded from as-cast and solution treated conditions have been studied. Results show that Ti element obviously refines the microstructure of AM50 magnesium alloy and Mg17Al12 phase. Only 0.01 wt% Ti addition can make the Mg17Al12 phase turn into particles and small rod-like shape. Ti addition improves tensile strength at room temperature, and obviously improves elongation at elevated temperatures up to 200°C. The AM50+xTi alloys extruded from as-cast have better tensile strength at room temperature and better elongation at 100°C, 150°C and 200°C than that of AM50+xTi alloys extruded from solution treatment; The plasticity of AM50 magnesium alloys increases with Ti content increasing and temperature increasing for the tensile fractograph.


2018 ◽  
Vol 941 ◽  
pp. 1041-1046
Author(s):  
Paloma Hidalgo-Manrique ◽  
Joseph D. Robson

A textured Mg-Al-Zn alloy rolled plate was solution treated and aged at 320 oC for 2 h and 116 h, respectively. Afterwards, the three conditions were compressed at room temperature along the transverse direction to activate {110} twinning. Ageing treatments were observed to strengthen the alloy in relation to the solution-treated condition. This has been mainly attributed to the restricted lateral growth of twins in the presence of particles and thus to the additional stress required for twin growth. Accordingly, a slightly reduced twin volume fraction, but an increased number of smaller twins was observed after compression in the aged samples.


Alloy Digest ◽  
1961 ◽  
Vol 10 (10) ◽  

Abstract MST 431 is an alpha-beta type sheet alloy presently being supplied in the solution treated, solution treated and aged, and annealed conditions. Its principal advantage is good formability in the solution treated condition with subsequent high strength capability through an aging treatment. Properties indicate good strength and thermal stability for sheet applications up to 800 F for long times. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-30. Producer or source: Reactive Metals Corporation.


2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2012 ◽  
Vol 736 ◽  
pp. 307-315 ◽  
Author(s):  
Murugavel Suresh ◽  
Satyam Suwas

Mg alloys show limited room temperature formability compared to its lightweight counterpart aluminium alloys, which is a main obstacle in using this metal for most of the structural applications. However, it is known that grain refinement and texture control are the two possibilities for the improvement of formability of magnesium alloys. Amongst the approaches attempted for the texture weakening, additions through of rare-earth (RE) elements have been found most effective. The relationship between the texture and ductility is well established. In this paper, the effect of rare earth addition on texture weakening has been summarized for various magnesium alloys under the two most common modes of deformation methods.


Sign in / Sign up

Export Citation Format

Share Document