scholarly journals Acceleration of Bone Formation and Adhesion Ability on Dental Implant Surface via Plasma Electrolytic Oxidation in a Solution Containing Bone Ions

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Mosab Kaseem ◽  
Han-Cheol Choe

The present study examined the in vitro and in vivo bone formation and adhesion ability on the surface of a titanium dental implant made by plasma electrolytic oxidation (PEO) in electrolytes containing bioactive ions. To achieve this goal, screw-shaped fabricated Ti-6Al-4V alloy implants were processed via PEO using an electrolyte solution containing calcium (Ca), phosphorous (P), magnesium (Mg), zinc (Zn), strontium (Sr), silicon (Si), and manganese (Mn) species. The screw implants doped with bioactive elements via PEO were placed in rabbit tibia, and the results were compared to the sand-blasted Ti-6Al-4V alloy implants. At eight-week post-surgery, there was no significant difference in the values of removal torque between sand-blasted and PEO-treated implants. However, it was observed that the PEO treatment of dental implants led to the formation of more periphery bone as compared to the case of sand-blasted implants. Accordingly, the PEO-treated implants have the potential to be used as promising materials for dental applications.

2021 ◽  
Vol 21 (7) ◽  
pp. 3753-3758
Author(s):  
Hyun-Jun Kim ◽  
Han-Cheol Choe

In this study, plasma electrolytic oxidation (PEO) on Ti–xNb–2Ag–2Pt alloys for nano- and micro-pore formation in electrolyte with Ca and P ions for dental implant use was studied using various experimental equipment. The Ti–xNb–2Ag–2Pt alloys were fabricated using a vacuum arc melting furnace, and micro-pores were created through PEO-treatment in an electrolyte containing Ca and P ions. The PEO-treated surface was observed by X-ray diffractometer (XRD), field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy (EDS). The microstructure of Ti– xNb–2Ag–2Pt alloys showed the transformation of needle-like structure to equiaxed structure, as Nb content increased. Adding small amounts of Ag and Pt to Ti–xNb alloys, microstructure was not observed the significantly difference compared to Ti–xNb. The nano- and micro-pore sizes increased as the Nb content increased after PEO-treatment of Ti-xNb. In the case of Ti–50Nb–2Ag–2Pt, groove structure was observed, also the Ca/P ratio increased as the Nb content increased. The oxide layer thickness of Ti–xNb–2Ag–2Pt alloys was increased, as the Nb content increased.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4359
Author(s):  
Oleksandr Oleshko ◽  
Iryna Liubchak ◽  
Yevheniia Husak ◽  
Viktoriia Korniienko ◽  
Aziza Yusupova ◽  
...  

Despite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium–phosphate solution. Chemical and structural properties of the surface-modified titanium were assessed using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and contact angle measurement. A bacterial adhesion test and cell culture biocompatibility with collagen production were performed to evaluate biological effectiveness of the Ti after the plasma electrolytic process. The NTA-based calcium–phosphate solution with Ag nanoparticles (AgNPs) can provide formation of a thick, porous plasma electrolytic oxidation (PEO) layer enriched in silver oxide. Voltage elevation leads to increased porosity and a hydrophilic nature of the newly formed ceramic coating. The silver-enriched PEO layer exhibits an effective antibacterial effect with high biocompatibility and increased collagen production that could be an effective complex strategy for dental and orthopedic implant development.


2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

Author(s):  
Veta Mukaeva ◽  
E. Parfenov ◽  
R. Mukaev ◽  
M. Gorbatkov

The issue of modeling the distribution of the electric field in the electrolyzer during the plasma-electrolytic oxidation of a magnesium alloy for the motivation and formation of professional competencies for students in the study of electrical engineering disciplines is considered.


Sign in / Sign up

Export Citation Format

Share Document