scholarly journals Fatigue Assessment of Selective Laser Melted Ti-6Al-4V: Influence of Speed Manufacturing and Porosity

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1022
Author(s):  
Unai Segurajauregi ◽  
Adrián Álvarez-Vázquez ◽  
Miguel Muñiz-Calvente ◽  
Íker Urresti ◽  
Haydee Naveiras

Additive Manufacturing represents a promising technology as an alternative to the conventional manufacturing process, with rapid and economic product development, as well as a significant weight reduction and a freeform design. Although the mechanical properties of additively manufactured metals, such as the Ti-6Al-4V alloy, are well-established, a complete understanding of the fatigue performance is still a pending aspiration due to its inherent stochastic complexity and the influence of several manufacturing factors. This paper presents a study of the influence of speed manufacturing and porosity in the fatigue behaviour of a Ti-6Al-4V alloy. To this aim, a numerical simulation of the expected porosity at different laser velocities is performed, together with a simulation of the residual stresses. These numerical results are compared with experimental measurements of residual stresses and a qualitative analysis of the porosities. Then, fatigue strength is experimentally obtained for two different laser speeds and fitted by a probabilistic model. As a result, the probabilistic S–N fields for different laser velocities are found to be similar, with scatter bands nearly coincident, drawing the conclusion that this effect is negligible in comparison with other concurrent ones, such as roughness or surface defects from manufacturing conditions, promoting crack initiation and premature fatigue failure.

Author(s):  
Yuriy Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of harmful tensile residual stresses and introducing of compressive residual stresses into surface layers of a material, decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. The UP technique is based on the combined effect of high frequency impacts of special strikers and ultrasonic oscillations in treated material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1279
Author(s):  
Navid Sohrabi ◽  
Jamasp Jhabvala ◽  
Roland E. Logé

Bulk Metallic Glasses (BMG) are metallic alloys that have the ability to solidify in an amorphous state. BMGs show enhanced properties, for instance, high hardness, strength, and excellent corrosion and wear resistance. BMGs produced by conventional methods are limited in size due to the high cooling rates required to avoid crystallization and the associated detrimental mechanical properties. Additive manufacturing (AM) techniques are a potential solution to this problem as the interaction between the heat source, e.g., laser, and the feedstock, e.g., powder, is short and confined to a small volume. However, producing amorphous parts with AM techniques with mechanical properties comparable to as-cast samples remains a challenge for most BMGs, and a complete understanding of the crystallization mechanisms is missing. This review paper tries to cover recent progress in this field and develop a thorough understanding of the correlation between different aspects of the topic. The following subjects are addressed: (i) AM techniques used for the fabrication of BMGs, (ii) particular BMGs used in AM, (iii) specific challenges in AM of BMGs such as the control of defects and crystallization, (iv) process optimization of mechanical properties, and (v) future trends.


2020 ◽  
Vol 10 (12) ◽  
pp. 4148
Author(s):  
Rodrigo Cézar da Silveira Romero ◽  
André Argueso Machado ◽  
Kliftom Amorim Costa ◽  
Paulo Henrique Rodriguês Guilherme Reis ◽  
Pedro Paiva Brito ◽  
...  

This work aims to develop a low-cost human hand prosthesis manufactured through additive manufacturing. The methodology used for the development of the prosthesis used affordable and low-cost materials in the market. Tensile testing was performed to estimate the mechanical properties in order to verify the resistance of the printing material used. Afterwards, the mechanical feasibility study executed on the device was performed using finite element method. In conclusion, we can observe fundamental factors that influence the 3D printing process, especially in relation to its printing parameters and mechanical properties. Maximum stress, yield stress, modulus of elasticity, elongation, and hardness are the prominent properties that should be considered when choosing the polymeric material. The numerical simulation showed that the structure of the prosthesis did not present plastic deformations to the applied loads, proving its mechanical viability.


2020 ◽  
Vol 65 (4) ◽  
pp. 179-190
Author(s):  
Yuir Kudryavtsev

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UIT/UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UIT/UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UIT/UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The results of fatigue testing of large-scale welded specimens in as-welded condition and after application of UIT/UP are considered in this paper. It is shown that UIT/UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


Author(s):  
Weiqian Chi ◽  
Wenjing Wang ◽  
Chengqi Sun

Additively manufactured (AM) alloy usually inevitably contains defects during the manufacturing processor or service process. Defects, as a harmful factor, could significantly reduce the fatigue performance of materials. This paper shows that the location and introduced form of defects play an important role in high cycle and very high cycle fatigue (VHCF) behavior of selective laser melting Ti-6Al-4V alloy. S-N curve descends linearly for internal defects induced failure. While for artificial surface defects induced failure, S-N curve descends at first and then exhibits a plateau region feature. We also observed competition of interior crack initiation with the fine granular area feature in VHCF regime. The paper indicates that only the size or the stress intensity factor range of the defect is not an appropriate parameter describing the effect of defects on the fatigue crack initiation. Finally, the effect of artificial surface defects on high cycle and VHCF strength is modeled, i.e. the fatigue strength   σ, fatigue life  N and defect size area (square root of projection area of defect perpendicular to principal stress direction) is expressed as  σ = CN ( area)  for  N and  σ = CN ( area)  for  N≥N, where  C,  a and  n are constants, N is the number of cycles at the knee point.


2018 ◽  
Vol 165 ◽  
pp. 22032
Author(s):  
Wichian Niamchaona ◽  
Fabienne Pennec ◽  
Kévin Tihay ◽  
Michel Duchet ◽  
Bastien Weber ◽  
...  

New high strength steels are widely used nowadays in many industrial areas as in automotive industry. These steels are more resistant and provide higher fatigue limits than latter ones but they are also more sensible to small defects. Natural defects that outcome from metallurgy (as shrinkage, inclusion, void) are not considered in this study. We focus on small manufacturing defects such as cutting edge defects generated by punching or other surface defects due to stamping. These defects are harmful on the material fatigue behaviour due to high stress concentration at defects root. They also generate stress gradient that is beneficial from the fatigue strength point of view. This study focusses on the stress gradient (it does not account for the size effect) from cylindrical defect on specimen edge. Practically a normal stress gradient is added in multiaxial fatigue criteria formulation. Both critical plane approach and integral approach are involved in the present study. This gradient is calculated from stress states at defects root by using FEM. Criteria fatigue function at N cycles is used to assess the material fatigue strength. Obviously multiaxial fatigue criteria accounting for stress gradient give more precise fatigue functions than criteria that do not consider the gradient influence.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sareh Götelid ◽  
Taoran Ma ◽  
Christophe Lyphout ◽  
Jesper Vang ◽  
Emil Stålnacke ◽  
...  

Purpose This study aims to investigate additive manufacturing of nickel-based superalloy IN718 made by powder bed fusion processes: powder bed fusion laser beam (PBF-LB) and powder bed fusion electron beam (PBF-EB). Design/methodology/approach This work has focused on the influence of building methods and post-fabrication processes on the final part properties, including microstructure, surface quality, residual stresses and mechanical properties. Findings PBF-LB produced a much smoother surface. Blasting and shot peening (SP) reduced the roughness even more but did not affect the PBF-EB surface finish as much. As-printed PBF-EB parts have low residual stresses in all directions, whereas it was much higher for PBF-LB. However, heat treatment removed the stresses and SP created compressive stresses for samples from both PBF processes. The standard Arcam process parameter for PBF-EB for IN718 is not fully optimized, which leads to porosity and inferior mechanical properties. However, impact toughness after hot isostatic pressing was surprisingly high. Originality/value The two processes gave different results and also responses to post-treatments, which could be of advantage or disadvantage for different applications. Suggestions for improving the properties of parts produced by each method are presented.


2010 ◽  
Vol 24-25 ◽  
pp. 253-259 ◽  
Author(s):  
G. Urriolagoitia-Sosa ◽  
B. Romero-Ángeles ◽  
Luis Héctor Hernández-Gómez ◽  
G. Urriolagoitia-Calderón ◽  
Juan Alfonso Beltrán-Fernández ◽  
...  

The understanding of how materials fail is still today a fundamental research problem for scientist and engineers. The main concern is the assessment of the necessary conditions to propagate a crack that will eventually lead to failure. Nevertheless, this kind of analysis tends to be more complicated, when a prior history in the material is taken into consideration and it will be extremely important to recognize all the factors involved in this process. In this work, a numerical simulation of the introduction of residual stresses, which change the crack initiation conditions, in a modified compact tensile specimen to change the condition of crack initiation is presented. Four numerical analyses were carried out; an initial evaluation was performed in a specimen without a crack and it was used for the estimation of a residual stress field produced by an overload; three more cases were simulated and a crack was introduced in each specimen (1 mm, 5 mm and 10 mm, respectively). The overload was then applied to set up a residual stress field into the component; furthermore, in each case the crack compliance method (CCM) was applied to measure the induced residual stress field. By performing this numerical simulation, the accuracy of the crack compliance method can be evaluated. On the other hand, elastic-plastic finite element analysis was utilized for the residual stress estimation. The numerical analysis was based on the mechanical properties of a biocompatible material (AISI 316L). The obtained results provided significant data about diverse factors, like; the manner in which a residual stress field could modify the crack initiation conditions, the convenient set up for induction of a beneficial residual stresses field, as well as useful information that can be applied for the experimental implementation of this research.


Author(s):  
Yuri Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


Sign in / Sign up

Export Citation Format

Share Document