scholarly journals Wire Arc Additive Manufacturing with Novel Al-Mg-Si Filler Wire—Assessment of Weld Quality and Mechanical Properties

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1243
Author(s):  
René Winterkorn ◽  
Andreas Pittner ◽  
Michael Rethmeier

Wire arc additive manufacturing enables the production of near-net shape large-volume metallic components leveraging an established industrial base of welding and cladding technology and adapting it for layer-wise material deposition. However, the complex relationship between the process parameters and resulting mechanical properties of the components still remains challenging. In case of high-strength Al-Mg-Si aluminum alloys, no commercial filler wires are yet available due the high susceptibility of solidification cracking as well as the necessary efforts to obtain acceptable mechanical properties. To address this need, we evaluated a novel filler wire based on AlMg0.7Si doped with a Ti5B1 master alloy to foster fine equiaxed grains within the deposited metal. The correlation between the process parameters and component quality was examined by analyzing the size and distribution of pores as well as the grain morphology. Furthermore, we evaluated the influence of different post-weld heat treatment strategies to achieve mechanical properties corresponding to the reference wrought material. We demonstrated that fine equiaxed grains in the weld metal reduced the susceptibility of solidification cracking significantly. The novel AlMg0.7Si-TiB (S Al 6063-TiB) filler wire facilitated wire arc additive manufacturing of high-strength aluminum components with mechanical properties that were almost as superior as the corresponding wrought base material.

Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qingxian Hu ◽  
Junyan Miao ◽  
Xiaoli Wang ◽  
Chengtao Li ◽  
Kewei Fang

In this paper, ER50-6 steel was fabricated by wire arc additive manufacturing (WAAM) with an A-W GTAW system. The microstructure, mechanical properties, and corrosion behaviors of ER50-6 steel by WAAM were studied. The results showed that, with the GMAW current increased, from the bottom to the top of the sample, the microstructure was fine ferrite and granular pearlite, ferrite equiaxed grains with fine grains at grain boundaries, and columnar ferrite, respectively. The average hardness in the vertical direction of samples 1# and 2# was 146 and 153 HV, respectively. The hardness of sample 2# increased because of the refinement of grain. The pores in the sample increased as the bypass current increased. The higher bypass current also has a deterioration effect on the corrosion behavior of ER50-6 steel.


Author(s):  
Johanna Müller ◽  
Jonas Hensel ◽  
Klaus Dilger

AbstractAdditive manufacturing with steel opens up new possibilities for the construction sector. Especially direct energy deposition processes like DED-arc, also known as wire arc additive manufacturing (WAAM), is capable of manufacturing large structures with a high degree of geometric freedom, which makes the process suitable for the manufacturing of force flow-optimized steel nodes and spaceframes. By the use of high strength steel, the manufacturing times can be reduced since less material needs to be deposited. To keep the advantages of the high strength steel, the effect of thermal cycling during WAAM needs to be understood, since it influences the phase transformation, the resulting microstructure, and hence the mechanical properties of the material. In this study, the influences of energy input, interpass temperature, and cooling rate were investigated by welding thin walled samples. From each sample, microsections were analyzed, and tensile test and Charpy-V specimens were extracted and tested. The specimens with an interpass temperature of 200 °C, low energy input and applied active cooling showed a tensile strength of ~ 860–900 MPa, a yield strength of 700–780 MPa, and an elongation at fracture between 17 and 22%. The results showed the formation of martensite for specimens with high interpass temperatures which led to low yield and high tensile strengths (Rp0.2 = 520–590 MPa, Rm = 780–940 MPa) for the specimens without active cooling. At low interpass temperatures, the increase of the energy input led to a decrease of the tensile and the yield strength while the elongation at fracture as well as the Charpy impact energy increased. The formation of upper bainite due to the higher energy input can be avoided by accelerated cooling while martensite caused by high interpass temperatures need to be counteracted by heat treatment.


2020 ◽  
Vol 10 (5) ◽  
pp. 1563 ◽  
Author(s):  
Wanwan Jin ◽  
Chaoqun Zhang ◽  
Shuoya Jin ◽  
Yingtao Tian ◽  
Daniel Wellmann ◽  
...  

Wire arc additive manufacturing (WAAM) has been considered as a promising technology for the production of large metallic structures with high deposition rates and low cost. Stainless steels are widely applied due to good mechanical properties and excellent corrosion resistance. This paper reviews the current status of stainless steel WAAM, covering the microstructure, mechanical properties, and defects related to different stainless steels and process parameters. Residual stress and distortion of the WAAM manufactured components are discussed. Specific WAAM techniques, material compositions, process parameters, shielding gas composition, post heat treatments, microstructure, and defects can significantly influence the mechanical properties of WAAM stainless steels. To achieve high quality WAAM stainless steel parts, there is still a strong need to further study the underlying physical metallurgy mechanisms of the WAAM process and post heat treatments to optimize the WAAM and heat treatment parameters and thus control the microstructure. WAAM samples often show considerable anisotropy both in microstructure and mechanical properties. The new in-situ rolling + WAAM process is very effective in reducing the anisotropy, which also can reduce the residual stress and distortion. For future industrial applications, fatigue properties, and corrosion behaviors of WAAMed stainless steels need to be deeply studied in the future. Additionally, further efforts should be made to improve the WAAM process to achieve faster deposition rates and better-quality control.


2020 ◽  
Vol 65 (3) ◽  
pp. 125-136
Author(s):  
Yildiz Suat ◽  
Baris Koc ◽  
Oguzhan Yilmaz

Wire arc additive manufacturing (WAAM) which is literally based on continuously fed material deposition type of welding processes such as metal inert gas (MIG), tungsten inert gas (TIG) and plasma welding, is a variant of additive manufacturing technologies. WAAM steps forward with its high deposition rate and low equipment cost as compared to the powder feed and laser/electron beam heated processes among various additive manufacturing processes. In this work, sample parts made of low allow high strength steel (ER120S-G) was additively manufactured via WAAM method using robotic cold metal transfer technology (CMT). The process parameters and building strategies were investigated and correlated with the geometrical, metallurgical and mechanical properties on the produced wall geometries. The results obtained from the thin wall sample parts have showed that with increasing heat input, mechanical properties decreases, since higher heat accumulation and lower cooling rate increases the grain size. The tensile tests results have showed that casting steel (G24Mn6+QT2) mechanical properties which requires 500 MPa yield strength can be compared to with as build WAAM process having 640 MPa yield strength. Tensile strength were fulfilled for S690Q and yield strength is very close to the reference value.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Sign in / Sign up

Export Citation Format

Share Document