scholarly journals The Effect of Multilayer Architecture and Ta Alloying on the Mechanical Performance of Ti-Al-N Coatings under Scratching and Uniaxial Tension

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1307
Author(s):  
Artur Rubinovich Shugurov ◽  
Evgenii Dmitrievich Kuzminov

The present work is focused on a comparative study of the effect of Ti-Al interlayers and Ta alloying on the mechanical behavior of Ti1−xAlxN coatings under normal contact pressure and in-plane straining. The contact loading of the samples was carried out by scratch testing, while the in-plane tensile straining was performed by uniaxial tension of the coated steel substrates. The Ti0.45Al0.55N and Ti0.43Al0.45Ta0.12N monolithic coatings as well as the Ti0.45Al0.55N/Ti0.45Al0.55 multilayer coatings with different number and thickness of the layers were deposited by DC magnetron sputtering. It was found that the introduction of the ductile Ti0.45Al0.55 layers into the Ti0.45Al0.55N coating and alloying with Ta led to their significant toughening. The improved toughness of the Ti0.43Al0.45Ta0.12N coating coupled with high residual compressive stress and high hardness resulted in its strongest resistance to cracking under scratching and tensile straining among the coatings studied. The multilayer coating with the thickest metal layers exhibited the improved resistance to delamination under in-plane straining.

2015 ◽  
Vol 237 ◽  
pp. 15-20 ◽  
Author(s):  
Jerzy Smolik ◽  
Adam Mazurkiewicz ◽  
Zbigniew Słomka ◽  
Jan Bujak ◽  
Joanna Kacprzyńska-Gołacka ◽  
...  

Based on the analysis of the research directions in the field of coatings and layers with special operating properties, the production technologies of composite coatings, including the gradient, multi-layer, and multi-component coatings, should be distinct. The paper presents the results of material properties tests of a multi-layer coating Ti / TiN / TiAlNgradient / (TiAlN/VN)multinano obtained on hot working steel EN X32CrMoV3.3. The preparation of the multilayer coating was specially designed to increase the durability of forging dies in the brass forging process. The authors discuss the results of the microstructure tests for the obtained coatings (STEM+FIB) and present the hardness and Young's modulus as a function of the distance from the surface (nanoHardness Tester CSM) and the results of adhesion tests carried out using a scratch-test method. The obtained multilayer coatings were also subject to a tribological test using a tribometer tester by DUCOM. The authors indicate that the coatings based on vanadium nitride have very high hardness and Young's modulus (HV = 32–35 GPa, E = 420–450 GPa), a much lower coefficient of friction in combination with brass than steel, and a lower stability of these parameters at elevated temperatures. According to the authors, the coating represents an interesting material solution to increase the durability of forging dies in the process of brass forging.


1958 ◽  
Vol 25 (3) ◽  
pp. 339-346
Author(s):  
K. L. Johnson

Abstract The motion and deformation of an elastic sphere rolling on an elastic plane under a normal contact pressure N have been studied for the case where a tangential force T is also sustained at the point of contact. Provided that T < μN (μ = coefficient of friction), the sphere rolls without sliding but exhibits a small velocity relative to the plane, termed “creep.” Following the work of Mindlin and Poritsky, it is shown that creep arises from slip over part of the area of contact, and further, that this slip takes place toward the trailing edge of the contact area. On the assumption of a locked region in which no slip occurs, of circular shape, tangential to the circle of contact at its leading point, surface tractions are found which satisfy the condition of no slip within the locked region and are approximately consistent with the laws of friction in the slip region. The variation of creep velocity with tangential force is thereby determined. Experimental measurements of the creep of a steel ball rolling on a flat steel surface are in reasonable agreement with the theoretical results.


2021 ◽  
pp. 332-336
Author(s):  
A.A. Vereshchaka ◽  
V.P. Tabakov

The results of studies of the effect of nanolayer thickness on the wear of carbide tools are presented. The effect of nanolayer thicknesses on microhardness and fracture resistance of a multilayer coating during scratch testing is shown. The role of nanostructure in the processes of crack formation in multilayer coatings during cutting is revealed.


2019 ◽  
Vol 799 ◽  
pp. 211-216
Author(s):  
Alina Sivitski ◽  
Priit Põdra

Contact modeling could be widely used for different machine elements normal contact pressure calculations and wear simulations. However, classical contact models as for example Hertz contact models have many assumptions (contact bodies are elastic, the contact between bodies is ellipse-shaped, contact is frictionless and non-conforming). In conditions, when analytical calculations cannot be performed and experimental research is economically inexpedient, numerical methods have been applied for solving such engineering tasks. Contact stiffness parameters appear to be one of the most influential factors during finite element modeling of contact. Contact stiffness factors are usually selected according to finite element analysis software recommendations. More precise analysis of contact stiffness parameters is often required for finite element modeling of contact.


1991 ◽  
Vol 239 ◽  
Author(s):  
Alan Atkinson ◽  
Richard M. Guppy

ABSTRACTBrittle films of ceramics on metal substrates become mechanically unstable when a critical thickness is exceeded. Experiments have been carried out to investigate this instability for films under tension and compression. Films of cerium oxide gel under tension were prepared by spin-coating a ceria sol onto stainless steel substrates. Films exceeding a critical thickness failed by through-film cracking. The relationship between crack spacing and film thickness was consistent with partial interfacial delamination accompanying film cracking. Films of nickel oxide under compression were prepared by the oxidation of nickel and NiAl and NiCr alloys. The adhesion of the films to the substrates was measured in a double bending beam configuration and by scratch testing. A critical thickness was observed at which adhesion became very low and which depended on the composition of the metal substrate. The observed behaviour is consistent with a buckling instability in the film. In both types of film the conditions for crack propagation appear to determine instability, but the nature of the failure-initiating defects remains obscure.


1998 ◽  
Vol 325 (1-2) ◽  
pp. 163-174 ◽  
Author(s):  
J.S Wang ◽  
Y Sugimura ◽  
A.G Evans ◽  
W.K Tredway

2018 ◽  
Vol 24 (8) ◽  
pp. 5872-5876
Author(s):  
G Balakrishnan ◽  
V Sathiyaraj ◽  
M Dinesh ◽  
P. Naveen Chandran ◽  
C Thamotharan

In the present work, nanostructured tungsten nitride (WN) thin films were deposited by RF reactive magnetron sputtering technique in a mixture of N2 and Argon atmosphere and its microstructure and mechanical properties were investigated. The Argon pressure was kept constant at 20 sccm, while the N2 partial pressures were varied (3%, 5%, 10% and 15%). The WN thin films are deposited on SS304 stainless steel substrates at a temperature of 500 °C. The microstructural property was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) and mechanical properties were evaluated by nanoindentation technique. The XRD studies indicated the formation of different phases as a function of nitrogen content. The hardness and the young’s modulus values were in the range 27–39 GPa and 239–280 GPa, respectively. The high hardness values correspond to the coatings with the low nitrogen content and vice-versa. The mechanical properties of the tungsten nitride coatings were strongly influenced by the microstructure.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 580 ◽  
Author(s):  
Rumana Hossain ◽  
Farshid Pahlevani ◽  
Veena Sahajwalla

Understanding the effect of high strain rate deformation on microstructure and mechanical property of metal is important for addressing its performance as high strength material. Strongly motivated by the vast industrial application potential of metals having excellent hardness, we explored the phase stability, microstructure and mechanical performance of an industrial grade high carbon steel under different compressive strain rates. Although low alloyed high carbon steel is well known for their high hardness, unfortunately, their deformation behavior, performance and microstructural evolution under different compressive strain rates are not well understood. For the first time, our investigation revealed that different strain rates transform the metastable austenite into martensite at different volume, simultaneously activate multiple micromechanisms, i.e., dislocation defects, nanotwining, etc. that enhanced the phase stability and refined the microstructure, which is the key for the observed leap in hardness. The combination of phase transformation, grain refinement, increased dislocation density, formation of nanotwin and strain hardening led to an increase in the hardness of high carbon steel.


2012 ◽  
Vol 504-506 ◽  
pp. 975-980 ◽  
Author(s):  
Peter Sieczkarek ◽  
Lukas Kwiatkowski ◽  
A. Erman Tekkaya ◽  
Eugen Krebs ◽  
Dirk Biermann ◽  
...  

Sheet-bulk metal forming is a process used to manufacture load-adapted parts with high precision. However, bulk forming of sheet metals requires high forces, and thus tools applied for the operational demand have to withstand very high contact pressures, which lead to high wear and abrasion. The usage of conventional techniques like hardening and coating in order to reinforce the surface resistance are not sufficient enough in this case. In this paper, the tool resistance is improved by applying filigree bionic structures, especially structures adapted from the Scarabaeus beetle to the tool’s surface. The structures are realized by micromilling. Despite the high hardness of the tool material, very precise patterns are machined successfully using commercially available ball-end milling cutters. The nature-adapted surface patterns are combined with techniques like plasma nitriding and PVD coating, leading to a multilayer coating system. The effect of process parameters on the resistance of the tools is analyzed experimentally and compared to a conventional, unstructured, uncoated, only plasma nitrided forming tool. Therefore, the tools are used for an incremental bulk forming process on 2 mm thick metal sheets made of aluminum. The results show that the developed methodology is feasible to reduce the process forces and to improve the durability of the tools.


Sign in / Sign up

Export Citation Format

Share Document