scholarly journals Fracture Toughness Characteristics of High-Manganese Austenitic Steel Plate for Application in a Liquefied Natural Gas Carrier

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2047
Author(s):  
Gyubaek An ◽  
Jeongung Park ◽  
Hongkyu Park ◽  
Ilwook Han

High-manganese austenitic steel was developed to improve the fracture toughness and safety of steel under cryogenic temperatures, and its austenite structure was formed by increasing the Mn content. The developed high-manganese austenitic steel was alloyed with austenite-stabilizing elements (e.g., C, Mn, and Ni) to increase cryogenic toughness. It was demonstrated that 30 mm thickness high-manganese austenitic steel, as well as joints welded with this steel, had a sufficiently higher fracture toughness than the required toughness values evaluated under the postulated stress conditions. High-manganese austenitic steel can be applied to large offshore and onshore LNG storage and fuel tanks located in areas experiencing cryogenic conditions. Generally, fracture toughness decreases at lower temperatures; therefore, cryogenic steel requires high fracture toughness to prevent unstable fractures. Brittle fracture initiation and arrest tests were performed using 30 mm thickness high-manganese austenitic steel and SAW joints. The ductile fracture resistance of the weld joints (weld metal, fusion line, fusion line + 2 mm) was investigated using the R-curve because a crack in the weld joint tends to deviate into the weld metal in the case of undermatched joints. The developed high-manganese austenitic steel showed little possibility of brittle fracture and a remarkably unstable ductile fracture toughness.

2021 ◽  
pp. 1-11
Author(s):  
Keiji Ueda ◽  
Shotaro Yamashita ◽  
Atsushi Takada ◽  
Naoki Sahara ◽  
Tomo Ogura ◽  
...  

2020 ◽  
Vol 38 (4) ◽  
pp. 297-305
Author(s):  
Keiji UEDA ◽  
Shotaro YAMASHITA ◽  
Atsushi TAKADA ◽  
Naoki SAHARA ◽  
Tomo OGURA ◽  
...  

Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
2018 ◽  
Vol 67 (9) ◽  

Abstract Ferrium M54 was designed to create a cost-effective, ultra high-strength, high-fracture toughness material with a high resistance to stress-corrosion cracking for use in structural applications. This datasheet provides information on composition, hardness, and tensile properties as well asfatigue. Filing Code: SA-822. Producer or source: QuesTek Innovations, LLC.


2015 ◽  
Vol 83 (3) ◽  
Author(s):  
Zhuo Ma ◽  
Xiangchao Feng ◽  
Wei Hong

Consisting of stretchable and flexible cell walls or ligaments, soft elastic foams exhibit extremely high fracture toughness. Using the analogy between the cellular structure and the network structure of rubbery polymers, this paper proposes a scaling law for the fracture energy of soft elastic foam. To verify the scaling law, a phase-field model for the fracture processes in soft elastic structures is developed. The numerical simulations in two-dimensional foam structures of various unit-cell geometries have all achieved good agreement with the scaling law. In addition, the dependences of the macroscopic fracture energy on geometric parameters such as the network connectivity and spatial orientation have also been revealed by the numerical results. To further enhance the fracture toughness, a type of soft foam structures with nonstraight ligaments or folded cell walls has been proposed and its performance studied numerically. Simulations have shown that an effective fracture energy one order of magnitude higher than the base material can be reached by using the soft foam structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Poloni ◽  
Florian Bouville ◽  
Christopher H. Dreimol ◽  
Tobias P. Niebel ◽  
Thomas Weber ◽  
...  

AbstractThe brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the “mortar” phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol–gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 393
Author(s):  
Kei Maeda ◽  
Kosho Akatsuka ◽  
Gaku Okuma ◽  
Atsuo Yasumori

Fracture behavior via a flexural test for a newly found CaO–Al2O3–SiO2 (CAS) glass-ceramic (GC) was compared with that of enstatite GC and mica GC, which are well-known GCs with high-fracture toughness and machinability, respectively. By focusing on the nonelastic load–displacement curves, CAS GC was characterized as a less brittle material similar to machinable mica GC, compared with enstatite GC, which showed higher fracture toughness, KIC. The microcrack toughening mechanism in CAS GC was supported by the nondestructive observation of microcracks around the Vickers indentation using the X-ray microcomputed tomography technique. The CAS GC also showed higher transparency than mica GC due to its low crystallinity. Moreover, the precursor glass had easy formability due to its low-liquidus temperature.


Sign in / Sign up

Export Citation Format

Share Document