scholarly journals Corrosion Nature in [CoN/AlN]n Multilayers Obtained from Laser Ablation

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2049
Author(s):  
Julio Caicedo ◽  
Neufer Bonilla ◽  
Willian Aperador

The aim of this work is the improvement of the electrochemical behavior of industrial steel using [CoN/AlN]n multilayered system via reactive Pulsed Laser Deposition (PLD) technique with a Nd: YAG laser (λ = 1064 nm) on Silicon (100) and AISI 302 steel substrates. In this work was varied systematically the bilayer period (Λ) and the coatings were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and the chemical composition was determined by means of X-ray photoelectron spectroscopy (XPS). The maximum corrosion resistance for the coating with (Λ) equal to 34.7 nm, corresponding to n = 30 bilayered. The polarization resistance and corrosion rate were around 7.62 × 105 kOhm × cm2 and 7.25 × 10−5 mm/year, these values were 6.3 × 105 and 78.6 times better than those showed by the uncoated 302 stainless steel substrate (1.2 kOhm × cm2 and 0.0057 mm/year), respectively. The improvement of the electrochemical behavior of the steel 302 coated with this [CoN/AlN]n can be attributed to the presence of several interfaces that act as obstacles for the inward and outward diffusions of Cl− ions, generating an increment in the corrosion resistance. The electrochemical results found in the [CoN/AlN]n open a possibility of future applications in mechanical devices that require high demands in service conditions.

2010 ◽  
Vol 129-131 ◽  
pp. 467-471
Author(s):  
Yan Bo Wu ◽  
Si Si Zeng ◽  
Peng Sun

A chrome-free chemical conversion coating was prepared using stannous sulfate as the main salt. The morphology of the chemical conversion surface layer was observed by scanning electron microscopy (SEM). Coating composition and the microcosmic phase structure were characterized using energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) respectively. Electrochemical method and dropping test were used to study the coatings corrosion resistance. The results indicated that the tin salts conversion coating is a crystal structure material that composites with Sn-F-O-Al et al., the surface appears as a accumulation of spherical particles, the crystallinity of conversion coating is better than uncoated sample obviously, the corrosion resistance has improved too.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7389
Author(s):  
Michael Kahl ◽  
Teresa D. Golden

Modified zaccagnaite layered double hydroxide (LDH) type films were synthesized on steel substrates by pulsed electrochemical deposition from aqueous solutions. The resulting films were characterized by X-ray diffraction, scanning electron microscopy/X-ray dispersive spectroscopy, and Fourier transform infrared spectroscopy. Structural characterization indicated a pure layered double hydroxide phase; however, elemental analysis revealed that the surface of the films contained Zn:Al ratios outside the typical ranges of layered double hydroxides. Layer thickness for the deposited films ranged from approximately 0.4 to 3.0 μm. The corrosion resistance of the film was determined using potentiodynamic polarization experiments in 3.5 wt.% NaCl solution. The corrosion current density for the coatings was reduced by 82% and the corrosion potential was shifted 126 mV more positive when 5 layers of modified LDH coatings were deposited onto the steel substrates. A mechanism was proposed for the corroding reactions at the coating.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2647
Author(s):  
Madiha Ahmed ◽  
Yuming Qi ◽  
Longlong Zhang ◽  
Yanxia Yang ◽  
Asim Abas ◽  
...  

The objectives of this study were to reduce the corrosion rate and increase the cytocompatibility of AZ31 Mg alloy. Two coatings were considered. One coating contained MgO (MAO/AZ31). The other coating contained Cu2+ (Cu/MAO/AZ31), and it was produced on the AZ31 Mg alloy via microarc oxidation (MAO). Coating characterization was conducted using a set of methods, including scanning electron microscopy, energy-dispersive spectrometry, X-ray photoelectron spectroscopy, and X-ray diffraction. Corrosion properties were investigated through an electrochemical test, and a H2 evolution measurement. The AZ31 Mg alloy with the Cu2+-containing coating showed an improved and more stable corrosion resistance compared with the MgO-containing coating and AZ31 Mg alloy specimen. Cell morphology observation and cytotoxicity test via Cell Counting Kit-8 assay showed that the Cu2+-containing coating enhanced the proliferation of L-929 cells and did not induce a toxic effect, thus resulting in excellent cytocompatibility and biological activity. In summary, adding Cu ions to MAO coating improved the corrosion resistance and cytocompatibility of the coating.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
N. Madaoui ◽  
L. Bait ◽  
K. Kheyar ◽  
N. Saoula

A reactive r.f magnetron sputtering method was used to deposit titanium dioxide coating on stainless steel substrates without intentional heating or biasing. The purpose of this work is given to study the argon-oxygen mixing gas on the corrosion behavior of TiO2 coatings. The morphology and structure of the coatings were studied by X-ray diffraction (XRD). Potentiodynamic polarization was used to study the corrosion behavior of the coatings. The results obtained from potentiodynamic polarization curves showed that TiO2 coatings possessed higher corrosion resistance than uncoated substrate.


2012 ◽  
Vol 557-559 ◽  
pp. 1768-1771
Author(s):  
Xiao Bing Zhao ◽  
Zhi Hui Ye

Fe-based amorphous coating was prepared on stainless steel substrates by atmospheric plasma spraying (APS) using Fe-based amorphous powder as feedstock. Microstructures of the coating were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM). The corrosion behavior of coating and stainless steel were evaluated respectively in 3.5% NaCl, 10% NaOH and 1 mol/L H2SO4 aqueous solutions by electrochemical workstation. The results indicated that the coating was composed of most amorphous phase and some Fe-Cr crystalline phase. The coating exhibited the better corrosion resistance in H2SO4 solution, while the worse in NaOH.


Zinc and some of its alloys have a number of characteristics that make it well suited for use as a protective coating against the corrosion of steel substrates under severe atmospheric conditions. The metal of zinc, which represents the main galvanization element offer then a cathodic protection to the ferrous materials. Because of these excellent characteristics, galvanization coatings are expected to be used for different protective applications fields. The objective of this work is to study the influence of the nature of steel substrate on the microstructure and the hardness of the intermetallic compounds. The steels used as the substrate are employed in agriculture field as tubes and irrigation elements in pivot. After an optimal preparation of the surface of the substrate by an appropriate roughness process, the steels specimen were immersed in a molten zinc bath maintained at 450°C. The chemical reactions which take place between the steel and the liquid zinc give rise to the formation of the  and  intermetallic compounds and the -Fe/Zn solid solution. The structure of coating was identified by X ray diffraction. The morphology and thickness of phases formed the coatings at different parameters took place with optical microscope. Finally the hardness of coatings was measured with a Vickers hardness tester.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Udomdej Pakdee ◽  
Surasak Chiangga ◽  
Suchat Suwannatus ◽  
Pichet Limsuwan

Multiwalled carbon nanotubes (MWCNTs) were synthesized on austenitic stainless steel foils (Type 304) using a home-built thermal chemical vapor deposition (CVD) under atmospheric pressure of hydrogen (H2) and acetylene (C2H2). During the growth, the stainless steel substrates were heated at different temperatures of 600, 700, 800, and 900°C. It was found that MWCNTs were grown on the stainless steel substrates heated at 600, 700, and 800°C while amorphous carbon film was grown at 900°C. The diameters of MWCNTs, as identified by scanning electron microscope (SEM) images together with ImageJ software program, were found to be 67.7, 43.0, and 33.1 nm, respectively. The crystallinity of MWCNTs was investigated by an X-ray diffractometer. The number of graphitic walled layers and the inner diameter of MWCNTs were investigated using a transmission electron microscope (TEM). The occurrence of Fe3O4 nanoparticles associated with carbon element can be used to reveal the behavior of Fe in stainless steel as catalyst. Raman spectroscopy was used to confirm the growth and quality of MWCNTs. The results obtained in this work showed that the optimum heated stainless steel substrate temperature for the growth of effective MWCNTs is 700°C. Chemical states of MWCNTs were investigated by X-ray photoelectron spectroscopy (XPS) using synchrotron light.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


1999 ◽  
Vol 14 (3) ◽  
pp. 1148-1152 ◽  
Author(s):  
A. K. Sikder ◽  
T. Sharda ◽  
D. S. Misra ◽  
D. Chandrasekaram ◽  
P. Veluchamy ◽  
...  

Electrodeposited Ni and Ni-diamond composite layers were used as diffusion barriers for Fe to facilitate the diamond growth on stainless steel substrates. Raman spectroscopy and scanning electron microscopy show the formation of good quality diamond crystallites by chemical vapor deposition. X-ray diffraction results indicate that the expansion of Ni unit cell has taken place due to the formation of the Ni–C solid solution. This observation is also well supported by x-ray photoelectron spectroscopy studies. The lattice constant of the expanded Ni unit cell matches closely with the diamond, and this may be helpful in explaining the epitaxial growth of diamond on single-crystal Ni observed by others.


2007 ◽  
Vol 280-283 ◽  
pp. 795-800 ◽  
Author(s):  
Huogen Yu ◽  
Jia Guo Yu ◽  
Bei Cheng ◽  
C.H. Ao ◽  
S.C. Lee

TiO2 thin films were prepared on soda lime glass, fused quartz and stainless steel substrates by liquid phase deposition (LPD) method from a (NH4)2TiF6 aqueous solution upon the addition of boric acid (H3BO3), and then calcined at 500oC for 2 h. The prepared films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It was found that the substrates obviously influenced the element composition and microstructure of TiO2 thin films. Except Ti, O and a small amount of F and N elements, which came from the precursor solution, some Si (or Fe) element in the thin films deposited on soda lime glass and quartz substrates (or on stainless steel substrate) was confirmed. The Si (or Fe) element in the thin films could be attributed to two sources. One was from the SiF6 2- ions (or FeF6 2- ions) formed by a reaction between the treatment solution and soda lime glass or quartz (or stainless steel) substrates. The other was attributed to the diffusion of Si (or Fe) from the surface of substrates into the TiO2 thin films after calcination at 500oC. The Si (or Fe) element in the TiO2 thin films could behave as a dopant and resulted in the formation of composite SiO2/TiO2 (or Fe2O3/TiO2) thin films on the substrates.


Sign in / Sign up

Export Citation Format

Share Document