scholarly journals Experimental Investigation of Thrust Force, Delamination and Surface Roughness in Drilling Hybrid Structural Composites

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4468
Author(s):  
Vigneshwaran Shanmugam ◽  
Uthayakumar Marimuthu ◽  
Sundarakannan Rajendran ◽  
Arumugaprabu Veerasimman ◽  
Adamkhan Mahaboob Basha ◽  
...  

Filled hybrid composites are widely used in various structural applications where machining is critical. Hence, it is essential to understand the performance of the fibre composites’ machining behaviour. As such, a new hybrid structural composite was fabricated with redmud as filler and sisal fibre as reinforcement in polyester matrix. The composite was then tested for its drilling performance. A comprehensive drilling experiment was conducted using Taguchi L27 orthogonal array. The effect of the drill tool point angle, the cutting speed, the feed rate on thrust force, delamination, and burr formation were analysed for producing quality holes. The significance of each parameter was analysed, and the experimental outcomes revealed some important findings in the context of the drilling behaviour of sisal fibre/polyester composites with redmud as a filler. Spindle speed contributed 39% in affecting the thrust force, while the feed rate had the maximum influence of ca. 38% in affecting delamination.

2020 ◽  
Vol 17 (5) ◽  
pp. 661-674 ◽  
Author(s):  
Sathiyamoorthy Margabandu ◽  
Senthilkumar Subramaniam

Purpose This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites. Design/methodology/approach The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes. Findings The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev. Originality/value The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.


2014 ◽  
Vol 903 ◽  
pp. 3-8 ◽  
Author(s):  
Aishah Najiah Dahnel ◽  
Stuart Barnes ◽  
Pipat Bhudwannachai

Machining of Carbon Fibre Composite (CFC), particularly drilling is frequently employed in many industries especially when dealing with joining, assembly and structural repair of the parts. This paper summarizes the properties of the CFC as well as the appropriate material and geometry of the cutting tool that should be used when drilling of the CFC in order to optimize the drilling performance. In addition, this work also presents the literature review on the relationship between cutting speed, feed rate, tool wear, thrust force and damage of the drilled CFC. The nature and heterogeneous structure of CFC often resulted in difficulty during their machining in terms of rapid tool wear and high thrust force. As a result, this always results in the damage of the drilled parts. Furthermore, higher cutting speed and lower feed rate are also recognized as significant factors which contribute to rapid wear of the cutting tool. Therefore, the use of tungsten carbide cutting tools, cutting fluids and cryogenic machining is seen to be a practical technique in optimizing the drilling performance involving CFC. In general, this work intends to provide a basic guideline and understanding regarding drilling of the CFC.


2021 ◽  
Vol 28 (1) ◽  
pp. 264-275
Author(s):  
Cristiano Devitte ◽  
Gabriel S. C. Souza ◽  
André J. Souza ◽  
Volnei Tita

Abstract Metal-composite laminates and joints are applied in aircraft manufacturing and maintenance (repairing) using aluminum alloys (AA) and glass fiber-reinforced polymer (GFRP). In these applications, drilling has a prominent place due to its vast application in aeronautical structures’ mechanical joints. Thus, this study presents the influence of uncoated carbide drills (85C, 86C, H10N), cutting speeds (v c = 20, 40, and 60 m min−1), and feed rates (f = 0.05, 0.15, and 0.25 mm rev−1) on delamination factor, thrust force ( F t {F}_{\text{t}} ), and burr formation in dry drilling metal-composite laminates and joints (AA2024/GFRP/AA2024). Experiments were performed, analyzed, and optimized using the Box–Behnken statistical design. Microscopic digital images for delamination evaluation, piezoelectric dynamometer for thrust force acquisition, and burr analysis were considered. The major finding was that the thrust force during drilling depends significantly on the feed rate. Another significant factor was the influence of the drill type (combined or not with feed rate). In fact, it was verified that the feed rate and the drill type were the most significant parameters on the delamination factor, while the feed rate was the most relevant on thrust force. The cutting speed did not affect significantly thrust force and delamination factor at exit ( F da S ) \hspace{.25em}({F}_{{\text{da}}_{\text{S}}}) . However, the combination f × v c was significant in delamination factor at entrance   ( F da E ) \text{ }({F}_{{\text{da}}_{\text{E}}}) . Based on the optimized input parameters, they presented lower values for delamination factors ( F da E = 1.18 {F}_{{\text{da}}_{\text{E}}}=1.18 and F da S = 1.33 {F}_{{\text{da}}_{\text{S}}}=\hspace{.25em}1.33 ) and thrust force ( F t = 67.3 N {F}_{\text{t}}=67.3\hspace{.5em}\text{N} ). These values were obtained by drilling the metal-composite laminates with 85C-tool, 0.05 mm rev−1 feed rate, and 20 m min−1 cutting speed. However, the burrs at the hole output of AA2024 were considered unsatisfactory for this specific condition, which implies additional investigation.


Author(s):  
Zhaoju Zhu ◽  
Shaochun Sui ◽  
Jie Sun ◽  
Jianfeng Li ◽  
Kai Liu

In order to break the bottleneck of low efficiency, bad quality following drilling alloy Ti6Al4V, the effect of cutting parameters on thrust force, drilling vibration, burr height and surface roughness was studied based on response surface method. The optimized parameters were obtained. Results showed that feed rate had significant effect on thrust force and little on drilling vibration, while cutting speed had significant effect on vibration and little on thrust force. It is also observed that surface roughness decreased with cutting speed increasing, as well as increased with feed rate increasing. In addition, microstructure on the drilled hole surface showed mobility along feeding direction. Grain refinement on the drilling hole surface became serious with the increase of cutting speed and feed rate.


2016 ◽  
Vol 852 ◽  
pp. 29-35
Author(s):  
R. Panneerdhass ◽  
A. Gnanavelbabu ◽  
K. Rajkumar

The need for eco-friendly materials and non-polluting processing techniques has made natural fibre reinforced polymer composites as potential candidates to replace GFRPS and CFRPS in semi structural applications. Ground nut shell and luffa fibre are easily available in the market at low cost. Polymer composites consisting of 30%, and 40% volume fractions of a hybrid reinforcement containing groundnut shell and luffa fibre in epoxy resin were fabricated by hand lay-up technique with varying process parameters, the variation in the mechanical properties such as tensile, compressive, flexure and impact strength are studied. The optimum mechanical properties were obtained in 40% of fiber volume fraction of treated fiber composites the machinability study was performed by drilling experiments using a drilling machine with drill tool dynamometer. Two input parameters, cutting speed and feed rate and the one output parameter, thrust force, were used for the drilling process. TiAlN coated solid carbide and hss drills were employed in the drilling experiments and a comparative study was made based on the output parameters. Solid carbide resulted in lower thrust force values and feed rate proved to be the most influential parameter on thrust force.


2019 ◽  
Vol 165 ◽  
pp. 222-232 ◽  
Author(s):  
Aiman Akmal Abdul Nasir ◽  
Azwan Iskandar Azmi ◽  
Tan Chye Lih ◽  
Mohd Shukry Abdul Majid

2020 ◽  
Vol 29 ◽  
pp. 2633366X2093771
Author(s):  
Ferit Ficici

Aluminum matrix composite materials being used in different sectors including automobile, aerospace, defense, and medical and are currently displacing unreinforced materials with their superior mechanical properties. The metal removal process of drilling is widely used in many structural applications. This study experimentally investigates the drilling characteristics of silicon carbide (SiCp)-reinforced Al 7075 composites produced by stir casting method. Also, two different drill materials with high-speed steel (HSS) and titanium nitride (TiN)-coated HSS carry out in drilling operation. The effect of operational parameters such as cutting speed and feed rate and materials parameters such as weight fraction of reinforcement and cutting tools on the surface roughness of drilled holes were evaluated in the drilling operations. The results of the drilling test indicate that the feed rate and cutting speed have a very strong effect on the surface roughness of matrix alloy and composite materials. The surface roughness ( Ra) values increased with increasing the feed rate and decreased with increasing the cutting speed. Under 0.10 mm/rev and 20 m/min drilling conditions and using HSS drill, surface roughness values for matrix, 5% SiC-, 10% SiC-, and 15% SiC-reinforced composites, were obtained 2.57, 2.59, 2.61, and 2.64 µm, respectively; besides, using TiN-coated HSS drill, surface roughness values were obtained 1.60, 1.63, 1.64, and 1.66 µm, respectively. An increase in the weight fraction of the abrasive SiC particle resulted in a very crucial deterioration quality of the drilled hole. TiN-coated HSS drills better performance exhibits than uncoated HSS drills for all the drilling operations about surface roughness properties. Short chip formations observed both the matrix alloy and the composite materials for two different drills in the drilling operations.


2020 ◽  
pp. 089270572093916
Author(s):  
Nafiz Yaşar ◽  
Mustafa Günay ◽  
Erol Kılık ◽  
Hüseyin Ünal

In this study, the mechanical and machinability characteristics of chitosan (Cts)-filled polypropylene (PP) composites produced by injection molding method were analyzed. Uniaxial tensile, impact, hardness, and three-point flexural tests were used to observe the influence of Cts filler on the mechanical behavior of PP. For the machinability analysis of these materials, drilling experiments based on Taguchi’s L27 orthogonal array were performed using different drill qualities and machining parameters. Then, machining conditions are optimized through grey relational analysis methodology for machinability characteristics such as thrust force and surface roughness obtained from drilling tests. The results showed that tensile, flexural strength, and percentage elongation decreased while impact strength increased with adding the Cts filler to PP. Moreover, it was determined that the tensile and flexural modulus of elasticity increased significantly and there was a slight increase in hardness. Thrust forces decreased while surface roughness values increased when the Cts filler ratio and feed rate was increased. The optimal machining conditions for minimizing thrust force and surface roughness was obtained as PP/10 wt% Cts material, uncoated tungsten carbide drill, feed rate of 0.05 mm/rev, and cutting speed of 40 m/min. In this regard, PP composite reinforced by 10 wt% Cts is recommended for industrial applications in terms of both the mechanical and machinability characteristics.


2012 ◽  
Vol 523-524 ◽  
pp. 215-219 ◽  
Author(s):  
Mohammad Ali Kadivar ◽  
Javad Akbari ◽  
Reza Yousefi

Burr in drilling plays an important role on product quality, so analysis the burr size is essential at the final production. This paper presents the application of Taguchi method for survey the burr height and burr thickness by adding ultrasonic vibration to the process. In this paper L18 orthogonal array based on Taguchi techniques was used in the design of experiments. Analysis of Variance (ANOVA) was used to determination the effect of drilling parameter on burr formation. Influence of cutting speed, feed rate and percentage of SiC particle was investigated in with and without Ultrasonic assisted drilling. Al/SiCp MMC with 5, 15 and 20 wt% of particulate SiC in dry drilling operation with TiN coated drill tools were investigated.


2011 ◽  
Vol 188 ◽  
pp. 372-375
Author(s):  
H.L. Zhang ◽  
Jin Chen

Drilling is one of the complex machining processes, which has been widely applied in the manufacturing area. In this paper, a 3D coupled thermo-mechanical finite element model was used for simulating the thrust force, torque and von Mises equivalent stress at different cutting conditions. The J-C damage model (shear failure) was used in conjunction with the J-C plasticity model, as well as the continuous adaptive remeshing technical. The results show that the thrust force and torque increase with the increasing of the cutting speed and feed rate, and the influence of the feed rate is more obviously.


Sign in / Sign up

Export Citation Format

Share Document