Effect of Pre-Straining and Natural Aging on the Hardening Response during Artificial Aging of EN AW 6082 and Lead Free EN AW 6023 Aluminium Alloys

2019 ◽  
Vol 952 ◽  
pp. 82-91
Author(s):  
Martin Fujda ◽  
Miloš Matvija ◽  
Peter Horňak

In order to study the pre-straining and natural aging effects on the age-hardening response of EN AW 6082 and EN AW 6023 aluminium alloys during artificial aging at 170°C, the pre-straining by 5% was performed immediately after solution treatment of alloys at 550°C and subsequent quenching. The age-hardening response during artificial aging applied after various natural aging time (from 0.1 to 5 000 hours) was investigated using Vickers microhardness measurements and transmission electron microscopy characterization. It was found that pre-straining of quenched alloys state caused a dislocation density increasing in solid solution, which resulted in an immediate microhardness increase of alloys. During the subsequent natural aging of EN AW 6082 alloy, its microhardness increased right after alloy quenching and pre-straining, but only to the values obtained for the unstrained alloy state. On the contrary, the hardness of pre-straining EN AW 6023 alloy that is alloyed by Sn did not increase either after 10 hours of natural aging. This phenomenon is attributed to the effect of Sn on suppression of the strengthening clusters formation. The hardness of alloys increased greatly during artificial aging after pre-straining and natural aging due to accelerating the formation of coherent β″-phase particles. The negative effect of natural aging on the maximum age-hardening response obtained during alloys artificial aging had been observed for most of the pre-strained and naturally aged alloys states, with exception of EN AW 6023 alloy states that were pre-strained and shortly naturally aged (up to 100 hours).

2010 ◽  
Vol 305-306 ◽  
pp. 15-22
Author(s):  
Emad A. Badawi ◽  
M.A. Abdel-Rahman ◽  
Alaa El-Deen A. El-Nahhas ◽  
M. Abdel-Rahman

Many Aluminum-based alloys are strengthened by using a heat-treatment process known as age-hardening. The aim of this work was to produce a high-strength 6xxx-series Aluminum alloy by adjusting the processing conditions, namely solutionizing and artificial aging. It consists of heating the alloy to a temperature at which the soluble constituents will form an homogeneous mass via solid diffusion, holding the mass at that temperature until diffusion takes place, then quenching the alloy rapidly to retain the homogeneous condition. In the quenched condition, heat-treated alloys are supersaturated solid solutions that are comparatively soft and workable, and unstable, depending upon the composition. After solution treatment and quenching, hardening is achieved either at room temperature (natural aging) or via a precipitation heat treatment at a suitable temperature (artificial aging). Precipitation heat treatments are generally low-temperature, long-term processes. Temperatures range from 115 to 190C; times vary from 5 to 48 h. The choice of time-temperature cycles for precipitation heat treatment should receive careful consideration. The objective is to select the cycle that produces an optimum precipitate size and distribution pattern. The mechanical characterization of heat-treatable 6xxx (Al-Mg-Si-Cu based) 6066 wrought aluminum alloys was studied. Their effects were investigated in terms of microstructure using positron annihilation lifetime techniques and monitoring the mechanical properties by mean of Vickers hardness measurements. The hardness is the resistance of a material to plastic deformation, and gives it the ability to resist deformation when a load is applied. The greater the hardness of the material, the greater resistance it has to deformation. The Vickers hardness of 6066 alloy has its maximum value (98) when aged for (10) hours at (175C) after quenching at 530C; so this temperature is the solution temperature of this alloy .The hardness conformed to reference values.


2019 ◽  
Vol 952 ◽  
pp. 74-81 ◽  
Author(s):  
Martin Fujda ◽  
Miloš Matvija ◽  
Miroslav Glogovský

The effect of natural pre-aging time (from 0.1 to 10000 h) on mechanical response during subsequent artificial aging of EN AW 6063 aluminium alloy at 170°C was investigated using Vickers microhardness measurements, tensile test analysis and transmission electron microscopy characterization. The microhardness and tensile strength of EN AW 6063 alloy increased slightly with natural aging time. Afterward, the artificial ageing from 18 to 20 hours induced the maximum increasing of hardness and strength for variously naturally pre-aged states of alloy. But, it was found that when pre-aging time was prolonged from 0.1 h to 10000 h, the mechanical response of artificial aging applied for the pre-aged alloy states was slightly improved. It was suggested, that as pre-aging time was increased, the size of β'-phase particles formed in solid solution of pre-aged alloy state during artificial aging was decreased and their amount was increased.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Naoto Kirekawa ◽  
Kaisei Saito ◽  
Minho O ◽  
Equo Kobayashi

Natural aging after solution treatment has a negative effect on the precipitation strengthening of Al–Mg–Si alloys since Cluster(1) formed at a room temperature cannot be dissolved or transformed into precipitates during artificial aging at 170 °C. In this study, cold rolling is focused on as an alternative solution to pre-aging, which is a conventional method to prevent Cluster(1) formation. It is known that excess vacancies are necessary for cluster formation. Cold rolling suppresses cluster formation because excess vacancies disappear at dislocations introduced by cold rolling. In addition, it is expected that cold rolling accelerates the precipitation behavior because the diffusion of solute atoms is promoted by introduced lattice defects. The transition of Cluster(1) was evaluated by Micro Vickers hardness tests, tensile tests, electrical conductivity measurements and differential scanning calorimetry analyses. Results showed the negative effect of natural aging was almost suppressed in 10% cold-rolled samples and completely suppressed in 30% cold-rolled samples since Cluster(1) dissolved during artificial aging at 170 °C due to lowering of the temperature of Cluster(1) dissolution by cold rolling. It was found that the precipitation in cold-rolled samples was accelerated since the hardness peak of 10% cold-rolled samples appeared earlier than T6 and pre-aged samples.


2020 ◽  
Vol 326 ◽  
pp. 04007
Author(s):  
Magali Brunet ◽  
Benoit Malard ◽  
Nicolas Ratel-Ramond ◽  
Christophe Deshayes ◽  
Bénédicte Warot-Fonrose ◽  
...  

The understanding of long-term aging of aeronautical materials, in particular aluminium alloys used in the fuselage and structure of aircraft is of extreme importance for airline fleets. In this work, a plate from an old aircraft (Breguet) was retrieved and studied in terms of microstructure and mechanical properties. A comparison was made between this naturally-aged alloy and a modern alloy on which different artificial aging conditions were applied. The old alloy exhibits a precipitation of θ-Al2Cu at grain boundaries and of Ω-Al2Cu on dispersoids. This non-expected nanostructure for an alloy in T4 state was attributed to the heat that the plate experienced during the aircraft cycles. However, it is shown that this aging is reversible (after a solution treatment). Moreover, the very long time of outdoors exposure seems to have caused intergranular corrosion causing the early failure during tensile tests on some of the specimens. The artificial aging (low temperature, 100°C for up to 10,000h) applied on the modern 2017A alloy did not allow to reproduce the nanostructure of the old plate, meaning that isothermal conditions for artificial aging might not be appropriate in this case.


2013 ◽  
Vol 770 ◽  
pp. 88-91
Author(s):  
Amporn Wiengmoon ◽  
Pattama Apichai ◽  
John T.H. Pearce ◽  
Torranin Chairuangsri

Effects of T6 artificial aging heat treatment on microstructure, microhardness and ultimate tensile strength of Al-4.93 wt% Si-3.47 wt% Cu alloy were investigated. The T6 age hardening treatment consists of solution treatment at 500±5°C for 8 hours followed by quenching into hot water at 80°C and artificial aging at 150, 170, 200 and 230°C for 1-48 hours followed by quenching into hot water. Microstructure was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). XRD and SEM revealed that the microstructure in the as-cast condition consists of primary dendritic α-Al, acicular-plate and globular forms of eutectic Si and intermetallic phases including globular Al2Cu and a flake-shape Al5FeSi. By T6 aging hardening, some intermetallics were dissolved and spheroidized. The volume fraction of eutectic phases in the as-cast, solution-treated, and solution-treated plus aging at 170°C for 24 hours is 17%, 12% and 10%, respectively. TEM results showed that precipitates in under-aging condition at 170° C for 6 hours are in the form of disc shape with the diameter in the range of 7-20 nm. At peak aging at 170°C for 24 hours, thin-plate precipitates with about 3-10 nm in thickness and 20-100 nm in length were found, lengthening to about 30-200 nm at longer aging time. The microhardness and ultimate tensile strength were increased from 71 HV0.05 and 227 MPa in the as-cast condition up to 140 HV0.05 and 400 MPa after solution treatment plus aging at 170°C for 24 hours, and decreased at prolong aging time.


2018 ◽  
Vol 941 ◽  
pp. 961-966
Author(s):  
Shang Zhu ◽  
Zhi Hui Li ◽  
Li Zhen Yan ◽  
Xi Wu Li ◽  
Shu Hui Huang ◽  
...  

A Zn-added Al-Mg-Si-Cu alloy during aging at 170 °C up to 34 h exhibits an interesting age-hardening effect. Small clusters, enriched in Mg and Si, are present in the sample after 0.25 h aging. The β′′ phase is dominant with the peak hardness of 135 HV after aging of 8 h. A decrease in hardness of the alloy occurs with the aging time increasing to 34 h, due to the coarsening of β′′ phase. It is also found that the Cu-containing L phase co-exists with the β′′ phase at this aging condition. The quantitative solute concentrations of the matrix show that the formation of clusters is consistent with the slight lower contents of Mg, Si and Cu compared with the alloy chemical composition, and the present of β′′ and L phase is associated with the further partitioning of Mg, Si and Cu from the Al matrix into the precipitates. No Zn-rich clusters and precipitates are observed and the Zn concentration in matrix has no significant change during aging for up to 34 h. This result means that the major of Zn remains in the matrix as aging continues.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2255-2260
Author(s):  
KA KI (KATIE) AU ◽  
MICHAEL HODGSON ◽  
TIMOTIUS PASANG ◽  
YU LUNG CHIU

The magnesium silicide precipitates in the 6XXX series alloy are the main components contributing to the heat treatable properties and T6 strength of the alloy, which is influenced by the size, morphology and distribution of this phase. During the extrusion process, the strength contributing phase, magnesium silicide is supposed to dissolve and form again in a controlled state during age hardening. Whereas the intermetallic AlFeSi phase has little if any influence on the strength, the β phase of this intermetallic is known to cause brittle fracture of this alloy, as opposed to the less detrimental, more equiaxed α phase formed during homogenisation. This study investigates the as-extruded 6060 and the more heavily alloyed 6261 aluminium alloys, as well as the subsequent heat treated forms to investigate the ageing conditions to optimise hardening and shorten age hardening times for higher cost effectiveness. The microstructure, texture and precipitate size and distributions were studied using optical microscopy, SEM, EBSD and DSC. SEM and EDAX results have indicated signs of evenly distributed α AlFeSi and β Magnesium Silicide precipitates. The phase responsible for hardening is believed to be the much smaller scaled β" magnesium silicide, requiring much higher resolution studies.


2010 ◽  
Vol 442 ◽  
pp. 268-274 ◽  
Author(s):  
I.N. Qureshi ◽  
S. Rani ◽  
F. Yasmin ◽  
M. Farooque

Elgiloy is Co based alloy (40wt%Co, 20wt%Cr, 15wt%Ni, 14wt%Fe and 7wt%Mo). It was strengthened by cold work and is capable of additional hardening by aging. The effects of solution treatment, cold working and age-hardening on the microstructure of elgiloy were investigated using optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). As rolled strips were solution treated at 1065°C/1hr. These solution treated strips were then reduced 50% by cold rolling. After cold-deformation both є-hcp phase and fcc deformation twins are also considered to coexist at room temperature. The cold worked strips were then age hardened at (450-600)°C. The age hardened strips showed formation of additional є-phase (via α f c c є h c p transformation).


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7155
Author(s):  
Ruoqi Li ◽  
Naoki Takata ◽  
Asuka Suzuki ◽  
Makoto Kobashi ◽  
Yuji Okada ◽  
...  

The precipitation of intermetallic phases and the associated hardening by artificial aging treatments at elevated temperatures above 400 °C were systematically investigated in the commercially available AC2B alloy with a nominal composition of Al–6Si–3Cu (mass%). The natural age hardening of the artificially aged samples at various temperatures was also examined. A slight increase in hardness (approximately 5 HV) of the AC2B alloy was observed at an elevated temperature of 480 °C. The hardness change is attributed to the precipitation of metastable phases associated with the α-Al15(Fe, Mn)3Si2 phase containing a large amount of impurity elements (Fe and Mn). At a lower temperature of 400 °C, a slight artificial-age hardening appeared. Subsequently, the hardness decreased moderately. This phenomenon was attributed to the precipitation of stable θ-Al2Cu and Q-Al4Cu2Mg8Si6 phases and their coarsening after a long duration. The precipitation sequence was rationalized by thermodynamic calculations for the Al–Si–Cu–Fe–Mn–Mg system. The natural age-hardening behavior significantly varied depending on the prior artificial aging temperatures ranging from 400 °C to 500 °C. The natural age-hardening was found to strongly depend on the solute contents of Cu and Si in the Al matrix. This study provides fundamental insights into controlling the strength level of commercial Al–Si–Cu cast alloys with impurity elements using the cooling process after solution treatment at elevated temperatures above 400 °C.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1046 ◽  
Author(s):  
JaeHwang Kim ◽  
Jiwoo Im ◽  
Minyoung Song ◽  
Insu Kim

Two types of nanoclusters, Cluster (1) and Cluster (2), formed at around room temperature and 100 °C, respectively, affect the age-hardening behavior in Al-Mg-Si alloys. Formation of Cluster (1) during natural aging (NA) is more accelerated in the high-Mg (9M10S) alloy than in the low-Mg (3M10S) alloy. Hardness at the early stage of two-step aging at 170 °C is not increased for the natural aging samples. On the other hand, hardness is directly increased for the pre-aged (PA) specimens. Furthermore, the formation of Cluster (1) during natural aging is suppressed by the formation of Cluster (2) during pre-aging at 100 °C. To understand the effects of heat treatment histories and Mg contents on the microstructure, transmission electron microscopy (TEM) was utilized. All the images were obtained at (001) plane, and peak aged samples with different heat treatments were used. Lower number density of precipitates is confirmed for the natural aging samples compared with the single-aged and pre-aged specimens. A higher number density of precipitates is confirmed for 9M10S in comparison to 3M10S. Hardness results correspond well to the TEM images.


Sign in / Sign up

Export Citation Format

Share Document