scholarly journals Effect of Negative Current on the Microstructure of Oxide Coatings Prepared by Hybrid Pulse Anodization

Metals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Shuo Huang ◽  
Bailing Jiang ◽  
Cancan Liu ◽  
Qingying Shao ◽  
Hongtao Li

The oxide coatings were prepared on 6061 Al alloy at different negative current densities in oxalic acid using the hybrid pulse anodization (HPA) method at room temperature. The variation curves of positive and negative voltages with anodization time were recorded. The nanopore diameters and distribution regularities in HPA coatings were analyzed with the Image-Pro Plus software based on field-emission scanning electron microscope (FE-SEM) images. The results showed that the negative current could reduce the growth rate of HPA coatings, and thus led to a small thickness of the coatings within the same anodization time. Besides, appropriate negative current densities resulted in the better distribution uniformity of nanopores, but the excessive negative current densities tended to cause inferior nanopore arrangement. These were attributed to the existence of the negative current, causing H+ and O2− to move in opposite directions, so that a large number of H+ concentrated on the surface of the HPA coatings, resulting in the accelerated dissolution of the coatings.

2020 ◽  
Vol 58 (6) ◽  
pp. 699
Author(s):  
Quang-Phu Tran ◽  
Van-Da Dao ◽  
Van-Hoi Pham

Plasma electrolytic oxidation (PEO) has earned much attention due to its powerful and easy formation of hard and corrosion-resistant oxide layers on valve metals, such as Al alloys. Here we report the effects of current density (CD) on microstructure and properties of coatings on 6061 Al alloy by PEO using direct current mode. The electrolyte contains the chemicals of Na2SiO3, Na2WO4´2H2O, and NaH2PO2´H2O. The CDs adopted 5.0, 7.5, 10.0, and 12.5 A/dm2, respectively, for a fixed PEO time of 30 min. The thickness, surface morphology, phase composition, hardness, and corrosion resistance of PEO coatings as the function of the applied CD have been studied and discussed. Studied results show the coating thickness is proportional to the applied CD. When the applied CD increases 2.5 times from 5.0 to 12.5 A/dm2, the growth rate of oxide layers increased by more than 3.5 times, from 0.423 to 1.493 μm/min, respectively. SEM images are characterized by a reduction in the ratio of agglomerate-bumps-region/flatten-region as applied CD increases. However, cracks and larger pores appear when the applied CD is higher than 10.0 A/dm2. X-ray diffraction pattern shows that the main phases of Al, g-Al2O3, α-Al2O3, and W are contained in all coatings. PEO coated sample has the highest hardness of 1290 HV and highest polarization resistance of 8.80 ´ 106 Wcm2 obtained at applied CD 10 A/dm2 which shows the best performance of the coating. The variation in coating performance is explained by microstructure details, specifically phases, compositions of oxide-layers, and micro-pores and cracks.


2017 ◽  
Vol 35 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Kenneth Kanayo Alaneme ◽  
Eloho Anita Okotete ◽  
Michael Oluwatosin Bodunrin

AbstractThe corrosion behavior of Cu-Zn-Al alloys modified with Fe, B, and Fe-B was investigated. This was motivated by the need to verify the effect of microalloy additions on the corrosion behavior of Cu-Zn-Al alloys, which, as recent study suggests, impacts microstructural changes other than grain refinement. Cu-Zn-Al alloys were produced by casting method with and without the addition of microalloy elements. The alloys were subjected to thermomechanical treatment before machining of test samples for corrosion and microstructural analysis. Scanning electron microscopy (SEM) and polarization electrochemical technique were used for the study. From the results, increase in grain size and change in grain edge morphology was apparent for the modified Cu-Zn-Al alloys produced. In 3.5 wt.% NaCl and 0.3 m H2SO4 solutions, the corrosion current densities were dependent on the type and concentration of the microalloy addition. Essentially, the corrosion rates for the modified alloys were higher in 3.5 wt.% NaCl solution; in 0.3 m H2SO4 solution, the modified Cu-Zn-Al alloy grades were observed to be more resistant to corrosion. The corrosion mechanisms of the alloys in both solutions were not feasibly established from the SEM images, but the extent of corrosion product deposition was apparent.


2011 ◽  
Vol 239-242 ◽  
pp. 1892-1895
Author(s):  
Xiao Dong Wang ◽  
Xiao Hong Wu ◽  
Rui Wang ◽  
Song Tao Lu

Plasma electrolytic oxidation (PEO) of an 6061 Al alloy was accomplished in an electrolyte with sodium hexametaphosphate (10 g/L) and sodium silicate (10 g/L) Coatings were produced at four different current densities (4, 6, 8 and 10 A/dm2). Phase composition, morphology and tribological characteristics of the coatings were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and ball-on-disk friction testing. The results show that among the four ceramic coatings which were produced under four current densities, the coating produced under the current density of 8 A/dm2 got the lowest wear rate with the value of 4.5 × 10-5 g/m.


2016 ◽  
Vol 877 ◽  
pp. 617-624
Author(s):  
Min Pan ◽  
Da Xin Ren ◽  
Kun Ming Zhao ◽  
Rong Fan ◽  
Gang Song

Considering the poor plastic forming capacity of Al alloys at room temperature, this study proposed a stamping technique assisted by arc welding for partial material modification. The plastic forming capacity of the sheet pretreated by arc welding was confirmed with the V-shaped bending test. The microstructures and mechanical properties of the sheets were tested, and the cause of the increase in sheet deformability was analyzed. The Al alloy sheet pretreated by arc welding showed good plastic capacity at room temperature and under large deformations. The main advantage of arc welding is high speed, by which plastic working efficiency can be increased under certain conditions. In this technology, the difficult forming areas of structural parts are first located. Before plastic forming, sheets are pretreated by arc welding to convert the rolled grains in the softened heat-affected zones (HAZs) of the sheets into equiaxed grains and thereby regain grain deformability. Arc welding pretreatment is only used to soften difficult forming areas. Moreover, the local plasticity of sheets significantly increases in comparison with that of base metals, and the hardness of HAZs after plastic forming is improved.


SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 733
Author(s):  
Domenica Donia ◽  
Elvira Maria Bauer ◽  
Mauro Missori ◽  
Ludovica Roselli ◽  
Daniele Cecchetti ◽  
...  

ZnO has many technological applications which largely depend on its properties, which can be tuned by controlled synthesis. Ideally, the most convenient ZnO synthesis is carried out at room temperature in an aqueous solvent. However, the correct temperature values are often loosely defined. In the current paper, we performed the synthesis of ZnO in an aqueous solvent by varying the reaction and drying temperatures by 10 °C steps, and we monitored the synthesis products primarily by XRD). We found out that a simple direct synthesis of ZnO, without additional surfactant, pumping, or freezing, required both a reaction (TP) and a drying (TD) temperature of 40 °C. Higher temperatures also afforded ZnO, but lowering any of the TP or TD below the threshold value resulted either in the achievement of Zn(OH)2 or a mixture of Zn(OH)2/ZnO. A more detailed Rietveld analysis of the ZnO samples revealed a density variation of about 4% (5.44 to 5.68 gcm−3) with the synthesis temperature, and an increase of the nanoparticles’ average size, which was also verified by SEM images. The average size of the ZnO synthesized at TP = TD = 40 °C was 42 nm, as estimated by XRD, and 53 ± 10 nm, as estimated by SEM. For higher synthesis temperatures, they vary between 76 nm and 71 nm (XRD estimate) or 65 ± 12 nm and 69 ± 11 nm (SEM estimate) for TP =50 °C, TD = 40 °C, or TP = TD = 60 °C, respectively. At TP = TD = 30 °C, micrometric structures aggregated in foils are obtained, which segregate nanoparticles of ZnO if TD is raised to 40 °C. The optical properties of ZnO obtained by UV-Vis reflectance spectroscopy indicate a red shift of the band gap by ~0.1 eV.


2011 ◽  
Vol 391-392 ◽  
pp. 1445-1449
Author(s):  
Chun Hua Zhang ◽  
Shi Lin Luan ◽  
Xiu Song Qian ◽  
Bao Hua Sun ◽  
Wen Sheng Zhang

The influences of low temperature on the interlaminar properties for PBO fiber/epoxy composites have been studied at liquid nitrogen temperature (77 K) in terms of three point bending test. Results showed that the interlaminar shear strength at 77 K were significantly higher than those at room temperature (RT). For the analysis of the test results, the tensile behaviors of epoxy resin at both room temperature and liquid nitrogen temperature were investigated. The interface between fiber and matrix was observed using SEM images.


1990 ◽  
Vol 213 ◽  
Author(s):  
M. J. Mills ◽  
S. H. Goods ◽  
S. M. Foiles

ABSTRACTThe effect of boron on the structure and macroscopic properties of an isolated grain boundary in bicrystals of a non-stoichiometric Ni3Al alloy (76 at% Ni, 23 at% Al, 1 at%Ta) has been studied. The room temperature tensile ductility and fracture mode of the bicrystals varies dramatically with the rate of cooling after elevated temperature heat treatment. In the absence of significant segregation of boron to the boundary, the bicrystals fail via brittle interfacial fracture with little or no ductility. When the segregation of boron to the boundary is maximized, the bicrystals are highly ductile. High resolution transmission electron microscopy reveals that this ductile state is achieved without the formation of a detectable region of compositional disorder at the boundary. Atomistic calculations using a Monte Carlo scheme predict that only partial disordering of the planes immediately adjacent to the boundary should occur for Ni-rich alloys both with and without boron. These results suggest that the presence of boron causes an increase in the cohesive energy of the boundaries rather than a change in the local compositional ordering.


Sign in / Sign up

Export Citation Format

Share Document