scholarly journals Thermodynamic Modelling on Nanoscale Growth of Magnesia Inclusion in Fe-O-Mg Melt

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 174 ◽  
Author(s):  
Yuanyou Xiao ◽  
Hong Lei ◽  
Bin Yang ◽  
Guocheng Wang ◽  
Qi Wang ◽  
...  

Nano-magnesia is the intermediate product during the growth of magnesia inclusion in Mg-deoxidized steel. Understanding the thermodynamics on nano-magnesia is important to explore the relationship between magnesia product size and deoxidation reaction in molten steel. In this work, a thermodynamic modeling is developed to study the Mg-deoxidation reaction between nano-magnesia inclusions and liquid iron. The thermodynamic results based on the first principle method show that the Gibbs free energy change for the forming magnesia product decrease gradually with the increasing nano-magnesia size in liquid iron. The published experimental data about Mg-deoxidation equilibria in liquid iron are scattered across the region between the thermodynamic curves of 2 nm magnesia and bulk-magnesia. It is suggested that these scattered experimental data of Mg-deoxidized liquid iron are in different thermodynamic states. Some of these experiments are in equilibrium with bulk-magnesia, while most of these experiments do not reach the equilibrium state between bulk magnesia and liquid iron, but in quasi-equilibria between nano-magnesia and liquid iron. This is the reason that different researchers gave different equilibrium constants. Furthermore, the behavior of the metastable magnesia is one of the most important reasons for the supersaturation ratio or the excess oxygen for MgO formation in liquid iron.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hong Lei ◽  
Yuanyou Xiao ◽  
Guocheng Wang ◽  
Hongwei Zhang ◽  
Wei Jin ◽  
...  

Abstract Products of Al-deoxidation reaction in iron melt are the most common inclusions and play an important effect on steel performance. Understanding the thermodynamics on nano-alumina (or nano-hercynite) is very critical to explore the relationship between Al-deoxidation reaction and products growth in iron melt. In present study, a thermodynamic modeling of nano-alumina inclusions in Fe–O–Al melt has been developed. The thermodynamic results show that the Gibbs free energy changes for the formation of nano-Al2O3 and nano-FeAl2O4 decrease with the increasing size and increase with the increasing temperature. The Gibbs free energy changes for transformation of nano-Al2O3 into bulk-Al2O3 increase with the increasing size and temperature. The thermodynamic curve of nano-alumina (or nano-hercynite) and the equilibrium curve of bulk-alumina (or bulk-hercynite) obtained in this work are agree with the published experimental data of Al-deoxidation equilibria in liquid iron. In addition, the thermodynamic coexisting points about Al2O3 and FeAl2O4 in liquid iron are in a straight line and coincide with the various previous data. It suggested that these scattered experimental data maybe in the different thermodynamic state of Al-deoxidized liquid iron and the reaction products for most of the previous Al-deoxidation experiments are nano-alumina (or nano-hercynite).


2019 ◽  
Author(s):  
Liwei Cao ◽  
Danilo Russo ◽  
Vassilios S. Vassiliadis ◽  
Alexei Lapkin

<p>A mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed to identify physical models from noisy experimental data. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the number of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was coupled with the collection of experimental data in an automated fashion, and was proven to be successful in identifying the correct physical models describing the relationship between the shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of reactions. Future work will focus on addressing the limitations of the formulation presented in this work, by extending it to be able to address larger complex physical models.</p><p><br></p>


2010 ◽  
Vol 156-157 ◽  
pp. 1702-1707
Author(s):  
Xiang Wen Cheng ◽  
Jinchao Liu ◽  
Qi Zhi Ding ◽  
Li Ming Song ◽  
Zhan Lin Wang

How to predict the relationship among particle size and among product size, to establish the relationship between the granularity and working parameters in the process of grinding and to determine the optimum operating parameters. With proposing BS squeeze crush model by L. Bass and the idea of roll surface division as the material uneven extrusion force are adopted. Based on field experiments the experimental data is analyzed, the select function and the breakage functions are fitted with MATLAB software, and obtaining their model. The comminution model is determined by the roller division. We obtain the model parameter through the experimental data. Through model analysis shows: the relationship between particle breakage and energy absorption, namely the smaller size of the same power, the lower broken; the breakage diminishes with the decrease of particle size ratio and it will be tending to a small constant when the smaller particle size ratio. The breakage functions rapidly decrease within ratio of between 0.2-0.7. This shows: the energy consumption will rapidly increase when the particle size of less than 0.2 in broken; the selection diminish with the decrease of particle size. Pressure (8-9MPa) should be the most appropriate value.


2011 ◽  
Vol 321 ◽  
pp. 192-195
Author(s):  
Qing Bin Yang ◽  
Xiao Yang

In order to analysis the relationship between the strength and elongation and the blended ratio of SPF/Cotton blended yarn, the strength and elongation of SPF /cotton blended yarn with different blended ratio were measured and compared with the simple model. The results indicated that For the SPF/cotton blended yarn, the difference between the experimental data and the model value is remarkable because of the high cohesion of the cotton fibers.


2021 ◽  
Vol 21 (3) ◽  
pp. 554
Author(s):  
Putri Restu Dewati ◽  
Rochmadi Rochmadi ◽  
Abdul Rohman ◽  
Avido Yuliestyan ◽  
Arief Budiman

Astaxanthin is a natural antioxidant, and the highest content of this compound is found in Haematococcus pluvialis microalgae. Microwave-assisted extraction (MAE) is one of the environmentally friendly extraction methods and has many advantages. This study aims to investigate the extraction of astaxanthin through the MAE method using various solvents. Several equilibrium models were proposed to describe this solid-liquid equilibrium. The solid-liquid extraction equilibrium parameters were determined by minimizing the sum of squares of errors (SSE), in which equilibrium constants were needed for scaling up purposes. Previously, the microalgae were pretreated with HCl to soften their cell walls in order to improve the extraction recovery. In this study, dichloromethane, acetone, methanol, and ethanol were used as the solvents for extraction. The astaxanthin concentration was determined by high-performance liquid chromatography (HPLC) and spectrophotometry. Astaxanthin was found to attain equilibrium at 57.42% recovery in a single-step extraction. Thus, several steps were required in sequence to obtain an optimum recovery. The experimental data were fitted to three equilibrium models, namely, Henry, Freundlich, and Langmuir models. The experimental data were well fitted to all the models for the extraction in dichloromethane, methanol, ethanol and acetone, as evident from the almost same SSE value for each model.


2020 ◽  
Vol 3 (9) ◽  
pp. 198-207
Author(s):  
Marshely Zulhaisa ◽  
Syafruddin Karimi ◽  
Endrizal Ridwan

The purpose of this study was to determine the household interest in using mobile banking in Padang City. The factors studied in this research were risks, benefits, conveniences, trusts, and technology systems. This study used primary data by conducting a field survey through questionnaires distributed to 273 respondents in the Sawahan Village, East Padang District, Padang City. The data analysis method in this research wass qualitative by using descriptive analysis techniques and Structural Equation Modeling (SEM) processed with the AMOS program. Descriptive analysis was used to show the relationship between respondent characteristics such as age, sex, education level, occupation, and income and the respondent’s interests in mobile banking. While the results of the analysis obtained by the SEM method show that perceived benefits, perceived conveniences, perceived risks, technology systems influence household interest in mobile banking in Padang City, there is no influence of perceived trusts on household interest in mobile banking in Padang City.


1973 ◽  
Vol 26 (4) ◽  
pp. 469 ◽  
Author(s):  
JJ Lowke

The relationship between current ratios and electron diffusion coefficients for the Townsend-Huxley experiment is reanalysed with the assumption that diffusion can be represented by two coefficients DT and DL for diffusion transverse and parallel respectively to the applied electric field. When the new formula is used to interpret previous experimental data obtained with a diffusion tube of length 2 cm, the derived values of DT/fl become independent of pressure (fl being the electron mobility). For longer diffusion tubes (~ 6 cm), current ratios are insensitive to DL and the results differ insignificantly from those obtained using the formula previously derived on the assumption that diffusion is isotropic.


2011 ◽  
Vol 295-297 ◽  
pp. 1856-1859 ◽  
Author(s):  
Yong Tao Ma ◽  
Ye Ma

Polishing diamond with hot metal method was hard to get experimental data, which was very important to the process of polishing. The relationship between polishing parameters and polishing quantity cannot be easily deduced with the limited experimental data. This paper uses Rough Set method to process the data and some useful conclusions have been drawn. The load factor in polishing process can be ignored in the polishing process. In the case of engineering application, the load merely ensures the contact between diamond and hot iron metal. Other parameters, such as temperature, polishing speed and time, are important factors to the polishing quality.


2015 ◽  
Vol 760 ◽  
pp. 469-474 ◽  
Author(s):  
Aurelian Vlase ◽  
Ovidiu Blăjină ◽  
Marius Iacob

This paper studies the cutting moment at drilling of the stainless steel X15CrNiSi20-12. The structure of the cutting moment relation was modified with respect to the relation available in the technical literature for common steels. The tool speed was included in the calculus relation. The experimental data and their subsequent processing represent the original contributions of the authors to the estimation of polytropic exponents and to the assessment in terms of structure of the calculus relation of the cutting moment. The paper also contains graphs for the variation of the cutting moment with parameters of the cutting technology. The graphs are drawn based on the analytic relationship of the cutting moment, obtained in the paper, using the mathematical softwareMaple. The results presented in this study can be taken into consideration in the educational studies and in the theoretical technical research. Also, they can be readily implemented in the manufacturing activity. Our further studies aim these problems for another steels classes.


Sign in / Sign up

Export Citation Format

Share Document