scholarly journals Anti-Adipogenic Effect of Theabrownin Is Mediated by Bile Acid Alternative Synthesis via Gut Microbiota Remodeling

Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 475
Author(s):  
Junliang Kuang ◽  
Xiaojiao Zheng ◽  
Fengjie Huang ◽  
Shouli Wang ◽  
Mengci Li ◽  
...  

Theabrownin is one of the most bioactive compounds in Pu-erh tea. Our previous study revealed that the hypocholesterolemic effect of theabrownin was mediated by the modulation of bile salt hydrolase (BSH)-enriched gut microbiota and bile acid metabolism. In this study, we demonstrated that theabrownin ameliorated high-fat-diet (HFD)-induced obesity by modifying gut microbiota, especially those with 7α-dehydroxylation on the species level, and these changed microbes were positively correlated with secondary bile acid (BA) metabolism. Thus, altered intestinal BAs resulted in shifting bile acid biosynthesis from the classic to the alternative pathway. This shift changed the BA pool by increasing non-12α-hydroxylated-BAs (non-12OH-BAs) and decreasing 12α-hydroxylated BAs (12OH-BAs), which improved energy metabolism in white and brown adipose tissue. This study showed that theabrownin was a potential therapeutic modality for obesity and other metabolic disorders via gut microbiota-driven bile acid alternative synthesis.

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Ming-liang Chen ◽  
Long Yi ◽  
Yong Zhang ◽  
Xi Zhou ◽  
Li Ran ◽  
...  

ABSTRACT The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine- N -oxide (TMAO)-induced AS in ApoE −/− mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium , which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE −/− mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis. IMPORTANCE Recently, trimethylamine- N -oxide (TMAO) has been identified as a novel and independent risk factor for promoting atherosclerosis (AS) partially through inhibiting hepatic bile acid (BA) synthesis. The gut microbiota plays a key role in the pathophysiology of TMAO-induced AS. Resveratrol (RSV) is a natural phytoalexin with prebiotic benefits. A growing body of evidence supports the hypothesis that phenolic phytochemicals with poor bioavailability are possibly acting primarily through remodeling of the gut microbiota. The current study showed that RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling. And RSV-induced hepatic BA neosynthesis was partially mediated through downregulating the enterohepatic farnesoid X receptor-fibroblast growth factor 15 axis. These results offer new insights into the mechanisms responsible for RSV’s anti-AS effects and indicate that the gut microbiota may become an interesting target for pharmacological or dietary interventions to decrease the risk of developing cardiovascular diseases.


2021 ◽  
Author(s):  
Iain Robert Louis Kean ◽  
Josef Wagner ◽  
Anisha Wijeyesekera ◽  
Marcus de Goffau ◽  
Sarah Thurston ◽  
...  

Abstract Background: Critical illness frequently requires the use of broad-spectrum antimicrobials to treat life-threatening infection. The resulting impact on microbiome diversity is profound, influencing gastrointestinal fermentation endpoints, host immune response and metabolic activity including the conversion of primary bile acids to secondary bile acids. We previously observed reduced fermentation capacity in the gut microbiota of critically ill children upon hospital admission, but the functional recovery trajectory of the paediatric gut microbiome during critical illness has not been well defined. Here, we longitudinally studied the intestinal microbiome and faecal bile acid profile of critically ill children during hospitalisation in a paediatric intensive care unit (PICU). The composition of the microbiome was determined by sequencing of the 16s rRNA gene, and bile acids were measured from faecal water by liquid chromatography hyphenated to mass spectrometry. Results: In comparison to admission faecal samples, members of Clostridium cluster XIVa and Lachnospiraceae recovered during the late-acute phase (days 8-10) of hospitalisation. Patients with infections had a lower proportion of Lachnospiraceae in their gut microbiota than control microbiota and patients with admitting diagnoses. The proportion of Recovery Associated Bacteria (RAB) was observed to decline with the length of PICU admission. Additionally, the proportions of RAB were reduced in those with systemic infection, respiratory failure, and undergoing surgery. Notably, Clostridioides were positively associated with the secondary bile acid deoxycholic acid, which we hypothesised to driven by secondary bile acid induced sporulation; the ratio of primary to secondary bile acids demonstrated recovery during critical illness. Conclusion: The recovery of secondary bile acids occurs quickly after intervention for critical illness. Bile acid recovery may be induced by the Lachnospiraceae , the composition of which shifts during critical illness. Our data suggest that gut health and early gut microbiota recovery can be assessed by readily quantifiable faecal bile acid profiles.


Author(s):  
Zhou Wang ◽  
Yue Yu ◽  
Junyi Liao ◽  
Wei Hu ◽  
Xiqing Bian ◽  
...  

BackgroundRheumatoid arthritis (RA) is a long-term autoimmune disorder characterized by chronic inflammation that results in swollen and painful joints and even cartilage and bone damage. The gut microbiota, a novel anti-inflammatory target, is considered an important environmental factor in the development of RA. S-propargyl-cysteine (SPRC), an amino acid analogue, exerts anti-inflammatory, cardioprotective effects, and neuroprotective effects on various diseases. In recent studies, an SPRC treatment exerted anti-inflammatory effects on RA. Meanwhile, gut microbiome dysbiosis in individuals with RA has also been reported by many researchers. However, the relationship between SPRC and gut microbiota in individuals with RA remains unclear.MethodsThirty male Sprague-Dawley (SD) rats were randomly divided into three groups of 10 each, including the Control, Model, and SPRC groups. Adjuvant-induced arthritis (AIA) rats in SPRC group were treated with SPRC. Measurement of paw volume and serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels were applied to evaluate the inflammatory status. Fecal samples were collected on the 14th day and 28th day. Gut microbiota were analyzed using 16S ribosomal RNA (rRNA) gene amplicon sequencing. Untargeted metabolomics on plasma samples was applied to investigate the metabolic changes induced by the altered gut microbiota by using derivatization-UHPLC-Q-TOF/MS.FindingsUsing 16S rRNA amplicon sequencing, we found that SPRC significantly altered the gut microbiota structure in AIA rats. In particular, Bifidobacterium, a genus of BSH (Bile Salt Hydrolase)-producing microbes, was overrepresented in SPRC-treated AIA rats. Additionally, a subsequent metabolomics analysis indicated that bile acid metabolism was also altered by SPRC treatment. Interestingly, glycochenodeoxycholic acid (GCDCA) and glycocholic acid (GCA), which are formed with the participation of BSH-producing microbes in the intestine, were identified as crucial biomarkers responding to SPRC treatment with significantly lowered levels.InterpretationA mechanistic link between the gut microbiota and plasma metabolites was revealed in this study, which provides insights into the mechanism of SPRC treatment for RA from the perspective of the gut microbiota.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoyu Wu ◽  
Shengnan Yin ◽  
Chuanshang Cheng ◽  
Chuanhui Xu ◽  
Jian Peng

Interaction between the dietary fiber and the gut microbes can regulate host bile acid metabolism. This study sought to explore the effects of guar gum combined with pregelatinized waxy maize starch (GCW) in a gestation diet on reproductive performance, gut microbiota composition, and bile acid homeostasis of sows. A total of 61 large white sows were randomly grouped into the control (n = 33) and 2% GCW (n = 28) groups during gestation. GCW diet increased birth-weight of piglets, and decreased the percentage of intrauterine growth restriction (IUGR) piglets. In addition, dietary GCW reduced gut microbial diversity and modulated gut microbial composition in sows on day 109 of gestation. The relative abundance of bile salt hydrolase (BSH) gene-encoding bacteria, Lactobacillus and Bacteroides decreased after GCW administration, whereas no significant difference was observed in the fecal level of total glycine-conjugated and taurine-conjugated bile acids between the two groups. Dietary GCW increased the relative abundance of Ruminococcaceae (one of few taxa comprising 7α-dehydroxylating bacteria), which was associated with elevated fecal deoxycholic acid (DCA) in the GCW group. GCW administration lowered the concentrations of plasma total bile acid (TBA) and 7α-hydroxy-4-cholesten-3-one (C4) (reflecting lower hepatic bile acid synthesis) at day 90 and day 109 of gestation compared with the control diet. Furthermore, the levels of plasma glycoursodeoxycholic acid (GUDCA), tauroursodeoxycholic acid (TUDCA) and glycohyocholic acid (GHCA) were lower in the GCW group compared with the control group. Spearman correlation analysis showed alterations in the composition of the gut microbiota by GCW treatment was associated with improved bile acid homeostasis and reproductive performance of sows. In conclusion, GCW-induced improves bile acid homeostasis during gestation which may enhance reproductive performance of sows.


2017 ◽  
Vol 7 (11) ◽  
pp. 849
Author(s):  
Yosuke Saito ◽  
Hiroyuki Nishimiya ◽  
Yasue Kondo ◽  
Toyoaki Sagae

Background: Probiotics is used as a promising approach in the prevention and treatment of hypercholesterolemia. Modification of bile acid metabolism through the deconjugation of bile salts by microbial bile salt hydrolase (BSH) is considered to be the core mechanism of the hypocholesterolemic effects of probiotics. Nevertheless, BSH activity is reported to be detrimental to the human host due to the generation of toxic secondary bile acids. Thus, the influence of probiotic intake on bile acid metabolism needs to be elucidated. We analyzed the bile acid levels and microbiota in human fecal samples after probiotic supplementation to assess the influence of probiotic intake on fecal bile acid levels. Two patients hospitalized for schizophrenia and dyslipidemia, receiving an atypical antipsychotic drug, were enrolled in this study (Subjects A and B). Both subjects received Lactobacillus rhamnosus GG (LGG) for 4 weeks, and no probiotics for the following 4 weeks. Fecal samples were collected at baseline and after 4 and 8 weeks.Results: Conjugated bile acids may be modified by indigenous intestinal bacteria into unconjugated bile acids and secondary bile acids through deconjugation reactions by BSH activity and the subsequent 7a-dehydroxylation pathway, respectively. In the fecal microbiota from Subject A, the relative abundance of Bifidobacterium increased after LGG supplementation (30%–49%). Most Bifidobacterium and Lactobacillus strains that colonize mammalian intestines may report BSH activity, and in general bifidobacteria reveals a higher BSH activity than lactobacilli. The fecal unconjugated bile acid and secondary bile acid levels in Subject A increased after the LGG supplementation (0.36–1.79 and 1.82–16.19 mmol/g respectively). Although the LGG supplementation appears to promote bile acid deconjugation, most of the unconjugated bile acids in Subject A appear to have been modified into secondary bile acids. Alternatively, in Subject B there were no significant changes throughout the study.Conclusion: We observed a significant increase in the fecal secondary bile acid levels after probiotic administration in one of our cases. Further studies are needed to elucidate the factors affecting 7a-dehydroxylation of bile acids to confirm the safety of using probiotics.Keywords: bile salt hydrolase; BSH; dihydroxylation; Bifidobacterium


2021 ◽  
Author(s):  
Russell R Fling ◽  
Tim Zacharewski

Gut dysbiosis with disrupted enterohepatic bile acid metabolism is commonly associated with non-alcoholic fatty liver disease (NAFLD) and recapitulated in a NAFLD-phenotype elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. TCDD induces hepatic fat accumulation and increases levels of secondary bile acids including taurolithocholic acid and deoxycholic acid, microbial modified bile acids involved in host bile acid regulation signaling pathways. To investigate the effects of TCDD on the gut microbiota, cecum contents of male C57BL/6 mice orally gavaged with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD were examined using shotgun metagenomic sequencing. Taxonomic analysis identified dose-dependent increases in Lactobacillus species (i.e., Lactobacillus reuteri). Increased species were also associated with dose-dependent increases in bile salt hydrolase sequences, responsible for deconjugation reactions in secondary bile acid metabolism. Increased L. reuteri levels were further associated with mevalonate-dependent isopentenyl diphosphate (IPP) biosynthesis and menaquinone biosynthesis genes. Analysis of gut microbiomes from cirrhosis patients identified increased abundance of these pathways as identified in the mouse cecum metagenomic analysis. These results extend the association of lactobacilli with the AhR/intestinal axis in NAFLD progression and highlight the similarities between TCDD-elicited phenotypes in mice to human NAFLD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Song ◽  
Li-Ying Sun ◽  
Zhi-Jun Zhu

Background and Aims: Biliary atresia (BA) is the most common cholestatic liver disease in neonates. Although the Kasai procedure can improve temporary biliary drainage in some cases, complications and liver fibrosis still develop. Liver transplantation is the ultimate treatment. The current study aimed to investigate the effect of previous Kasai surgery on gut microbiota and bile acid in BA with end-stage liver disease.Methods: Patients with BA with end-stage liver disease were divided into two groups according to whether they had previously undergone Kasai surgery (non-Kasai: n = 8, post-Kasai: n = 8). Metagenomic sequencing and ultraperformance liquid chromatography/tandem mass spectrometry were performed to identify the gut microbiota and bile acid.Results: Previous Kasai surgery had some effects on gut microbiota and bile acid in BA with end-stage liver disease. In the gut microbiome, the differential species were mainly distributed at the species level. Veillonella atypica had a significant increase in the non-Kasai group (P < 0.05). Bacteroides spp., Prevotella spp., Barnesiella spp., Parabacteroides spp., Heliobacterium spp., Erysipelatoclostridium spp. and Diaporthe spp. were increased in the post-Kasai group (P < 0.05). Concerning functional profiles, methionine biosynthesis was enriched in the non-Kasai group, while pyridoxal biosynthesis and riboflavin biosynthesis were enriched in the post-Kasai group (linear discriminant analysis > 2, P < 0.05). In stools, 17 bile acids were distinctly elevated in the post-Kasai group, such as cholic acid, chenodeoxycholic acid, β-muricholic acid and tauro α-muricholate (P < 0.05). Spearman correlation test showed that V. atypica had an enormously positive correlation with liver enzymes. Faecalibacterium prausnitzii and Escherichia coli were associated with derivatives of the alternative pathway of bile acid metabolism.Conclusion: Previous Kasai surgery can improve the gut microbiota and bile acid in patients with BA with end-stage liver disease. This improvement contributes to maintaining the intestinal barrier.


2021 ◽  
Author(s):  
Ming-zhi Zhu ◽  
Fang Zhou ◽  
Jian Ouyang ◽  
Qi-ye Wang ◽  
Yi-long Li ◽  
...  

Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy. The synergistic effect may be attributed to regulation of gut microbiota and BA metabolism.


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


Sign in / Sign up

Export Citation Format

Share Document