scholarly journals Comparative Metabolite Profiling of Traditional and Commercial Vinegars in Korea

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 478
Author(s):  
Minhye Shin ◽  
Jeong-Won Kim ◽  
Bonbin Gu ◽  
Sooah Kim ◽  
Hojin Kim ◽  
...  

Vinegar, composed of various organic acids, amino acids, and volatile compounds, has been newly recognized as a functional food with health benefits. Vinegar is produced through alcoholic fermentation of various raw materials followed by acetic acid fermentation, and detailed processes greatly vary between different vinegar products. This study performed metabolite profiling of various vinegar products using gas chromatography–mass spectrometry to identify metabolites that are specific to vinegar production processes. In particular, seven traditional vinegars that underwent spontaneous and slow alcoholic and acetic acid fermentations were compared to four commercial vinegars that were produced through fast acetic acid fermentation using distilled ethanol. A total of 102 volatile and 78 nonvolatile compounds were detected, and the principal component analysis of metabolites clearly distinguished between the traditional and commercial vinegars. Ten metabolites were identified as specific or significantly different compounds depending on vinegar production processes, most of which had originated from complex microbial metabolism during traditional vinegar fermentation. These process-specific compounds of vinegars may serve as potential biomarkers for fermentation process controls as well as authenticity and quality evaluation.

2020 ◽  
Vol 58 (1) ◽  
pp. 84-90
Author(s):  
Lucas Caldeirão Rodrigues Miranda ◽  
Rodrigo José Gomes ◽  
osé Marcos Gontijo Mandarino ◽  
Elza Iouko Ida ◽  
Wilma Aparecida Spinosa ◽  
...  

Soybean molasses is a by-product from the production of protein concentrate from soybean meal that predominantly contains sugars, with sucrose as the major component. In Brazil, soybean molasses is used for animal feed or it is discarded, although some industries use it to produce ethanol. This study aims to evaluate the parameters required for the acetic acid fermentation of soybean molasses, and characterise the resultant vinegar. To study the most suitable parameters for the acetic acid fermentation, vinegar was produced from the alcoholic fermentation of soybean molasses through eight fermentation cycles: five for adaptation and three for production. The average acidity of the acetic acid fermentation product was 50.60 g/L, with an acetic acid fermentation yield, total yield of acetic acid in broth and productivity 65.01 %, 92.76 % and 0.033 g/(L·h), respectively. The vinegar produced from soybean molasses had an acidity of 5.07 % (m/V), residual ethanol content 0.17 % (m/V), sugars 7.86 % (m/V), dry extract 14.67 % (m/V), ash 2.27 % (m/V) and a density of 1.023 g/cm3. The contents of total phenolics and isoflavone decreased after the alcohol and acetic acid fermentations. Moreover, the isoflavone profile of the fermented product comprised only three forms: daidzein, glycitin and genistin. According to our results, 3460 L of vinegar can be produced for every tonne of soy molasses, with an acetic acid concentration of 40 g/L, the minimum required by the legislation on vinegar production. Thus, these findings demonstrate that soy molasses represents a useful raw material for the production of vinegar.


2021 ◽  
Vol 11 (13) ◽  
pp. 6039
Author(s):  
Huan Zhang ◽  
Jingli Zhou ◽  
Fanfan Lang ◽  
Yu Zheng ◽  
Fusheng Chen

Highland barley (HB, Hordeum vulgare L. var. nudum Hook. f.), also known as naked or hulless barley, is a kind of cereal crop growing at high altitudes (4200–4500 m) around the world. In this study, HB vinegar (HBV) was prepared, using Tibetan HB as the main raw material, according to the process of Shanxi aged vinegar (SAV), a famous vinegar in China, in which sorghum is usually used as the main raw material. The related main compounds, such as alcohol and acetic acid, in the alcohol and acetic acid fermentation processes were monitored and analyzed, respectively. The flavor components in the aged vinegars were analyzed by headspace solid-phase microextraction, combined with gas chromatography-mass spectrometry, and compared with sorghum vinegar (SV), which was made, using sorghum as the raw material, based on the SAV process. The results revealed that at the alcohol fermentation stage, the alcohol content of HB mash was higher than that of the sorghum mash (p < 0.05), and at the acetic acid fermentation stages of HBV and SV, the total acid contents were 6.23 and 5.81 (g·100 mL−1 and p < 0.05), respectively. After aging one and a half years, the contents of non-volatile acid, volatile acid, and ester compounds in HBV were higher than those in SV. Therefore, HB can replace sorghum as the raw material for making SAV. Based on a literature search, the comparison and analysis of the main components and volatile flavor compounds of HBV and SV were not studied before.


2021 ◽  
pp. 61-64
Author(s):  
Chandukishore. T ◽  
Sanchita V Patel ◽  
Aishwarya P M

Vinegar is a liquid obtained after alcoholic uid is exposed to oxygen in controlled conditions. Millet vinegar was produced basically to nd a replacement for the commonly used and less economical apple cider vinegar. Initially, four millets were selected as whole grains and heated with 5 folds of water at 90 to 100°C for 2 to 3 hours. Further the liquid obtained was used as reaction mixture for alcoholic and acetic acid fermentation. Vinegar so obtained after 7 days of alcoholic fermentation and 15 days of acetic acid fermentation is measured for its various physicochemical parameters. Vinegar showed signicant acidity of (5.5%) as acetic acid and various vitamins and minerals with low energy value. Vinegar also showed notable antimicrobial property with respect to selected bacterial species. Overall attempt for vinegar production using millets was successful. Further investigation on other properties and by improving vinegar production with controlled parameters could produce better vinegar.


2011 ◽  
Vol 28 (6) ◽  
pp. 1175-1181 ◽  
Author(s):  
Wei Xu ◽  
Zhiyong Huang ◽  
Xiaojun Zhang ◽  
Qi Li ◽  
Zhenming Lu ◽  
...  

2014 ◽  
Vol 8 ◽  
pp. 161-168 ◽  
Author(s):  
Stella A. Ordoudi ◽  
Fani Mantzouridou ◽  
Eleni Daftsiou ◽  
Christine Malo ◽  
Efimia Hatzidimitriou ◽  
...  

Foods ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 175 ◽  
Author(s):  
Tibet Tangpao ◽  
Hsiao-Hang Chung ◽  
Sarana Sommano

The research objectives of this study are to analyse the volatile compositions of different basil types available in Thai markets and to descriptively determine their aromatic qualities. Essential oils were hydro-distillated from fresh leaves of two Holy basil (Ocimum sanctum) varieties namely, white and red and other basil species, including Tree basil (O. gratissimum), Thai basil (O. basilicum var. thyrsiflorum), and Lemon basil (O. citriodorum). Oil physiochemical characteristics and volatile chromatograms from Gas Chromatography–Mass Spectrometry (GC-MS) were used to qualitatively and quantitatively describe the chemical compositions. Estragole, eugenol, and methyl eugenol were among the major volatiles found in the essential oils of these basil types. Classification by Principal Component Analysis (PCA) advised that these Ocimum spp. samples are grouped based on either the distinctive anise, citrus aroma (estragole, geranial and neral), or spice-like aroma (methyl eugenol, β-caryophyllene, and α-cubebene). The essential oils were also used for descriptive sensorial determination by five semi-trained panellists, using the following developed terms: anise, citrus, herb, spice, sweet, and woody. The panellists were able to differentiate essential oils of white Holy basil from red Holy basil based on the intensity of the anisic attribute, while the anise and citrus scents were detected as dominant in the Lemon basil, Tree basil, and Thai basil essential oils. The overall benefit from this research was the elucidation of aromatic qualities from Thai common Ocimum species in order to assess their potential as the raw materials for new food products.


Author(s):  
Yang Chen ◽  
Ye Bai ◽  
Dongsheng Li ◽  
Chao Wang ◽  
Ning Xu ◽  
...  

Abstract Acetic acid fermentation is an essential step in the production of high-quality fruit vinegar and typically involves the use of acetic acid bacteria (AAB). The present study showed that the high cell mass and acetic acid yields of ethanol-tolerant AAB under high ethanol conditions were related to the high activities and stability of both pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase and PQQ-dependent aldehyde dehydrogenase. Additionally, in acetic acid fermentation with watermelon wine (8 % ethanol), the main organic acids (acetic, tartaric and malic acids) produced by ethanol-tolerant Acetobacter pasteurianus AAB4 were higher than those by conventional A. pasteurianus AS1.41 (1.42-fold, 3.53-fold and 2.12-fold, respectively). Also, the main esters (ethyl acetate and phenylethyl acetate) produced by AAB4 were higher than those by AS1.41 (1.69-fold and 1.48-fold, respectively). In addition, the total sweet and umami free amino acids produced by AAB4 increased significantly. According to sensory analysis, the flavor, taste and overall acceptance score of watermelon vinegar produced by AAB4 were significantly higher than those by AS1.41. Therefore, high ethanol fermentation with ethanol-tolerant AAB improved the flavor and quality of watermelon vinegar, indicating that this technology can be applied to fruit vinegar production.


2019 ◽  
pp. 299-325
Author(s):  
Isidoro García-García ◽  
Jorge E. Jiménez-Hornero ◽  
Inés María Santos-Dueñas ◽  
Zoilo González-Granados ◽  
Ana María Cañete-Rodríguez

Sign in / Sign up

Export Citation Format

Share Document