scholarly journals Trefoil Factor Family Member 2: From a High-Fat-Induced Gene to a Potential Obesity Therapy Target

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 536
Author(s):  
Abdelaziz Ghanemi ◽  
Mayumi Yoshioka ◽  
Jonny St-Amand

Obesity has its epidemiological patterns continuously increasing. With controlling both diet and exercise being the main approaches to manage the energy metabolism balance, a high-fat (HF) diet is of particular importance. Indeed, lipids have a low satiety potential but a high caloric density. Thus, focusing on pharmacologically targetable pathways remains an approach with promising therapeutic potential. Within this context, trefoil factor family member 2 (Tff2) has been characterized as specifically induced by HF diet rather than low-fat diet. TFF2 has also been linked to diverse neurological mechanisms and metabolic patterns suggesting its role in energy balance. The hypothesis is that TFF2 would be a HF diet-induced signal that regulates metabolism with a focus on lipids. Within this review, we put the spotlight on key findings highlighting this line of thought. Importantly, the hypothetical mechanisms pointed highlight TFF2 as an important contributor to obesity development via increasing lipids intestinal absorption and anabolism. Therefore, an outlook for future experimental activities and evaluation of the therapeutic potential of TFF2 inhibition is given. Indeed, its knockdown or downregulation would contribute to an antiobesity phenotype. We believe this work represents an addition to our understanding of the lipidic molecular implications in obesity, which will contribute to develop therapies aiming to manage the lipidic metabolic pathways including the absorption, storage and metabolism via targeting TFF2-related pathways. We briefly discuss important relevant concepts for both basic and clinical researchers.

Life Sciences ◽  
2018 ◽  
Vol 215 ◽  
pp. 190-197 ◽  
Author(s):  
Abdelaziz Ghanemi ◽  
Aicha Melouane ◽  
Octave Mucunguzi ◽  
Mayumi Yoshioka ◽  
Jonny St-Amand

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 258
Author(s):  
Abdelaziz Ghanemi ◽  
Mayumi Yoshioka ◽  
Jonny St-Amand

Physiological homeostasis requires a balance between the immunological functions and the resulting damage/side effects of the immunological reactions including those related to high-fat (HF) diet. Within this context, whereas HF diet, through diverse mechanisms (such as inflammation), leads to immune-mediated damage, trefoil factor family member 2 (Tff2) represents a HF diet-induced gene. On the other hand, TFF2 both promotes tissue repair and reduces inflammation. These properties are towards counteracting the immune-mediated damage resulting from the HF diet. These observations suggest that the HF diet-induction of Tff2 could be a regulatory pathway aiming to counteract the immune-mediated damage resulting from the HF diet. Interestingly, since Tff2 expression increases with HF diet and with Tff2 also expressed in the brain, we also hypothesize that TFF2 could be a HF diet-induced food intake-control signal that reduces appetite. This hypothesis fits with counteracting the immune damage since reducing the food intake will reduce the HF intake and therefore, reduces the HF diet-induced tissue damage. Such food intake signaling would be an indirect mechanism by which TFF2 promotes tissue repair as well as a pathway worth exploring for potential obesity management pharmacotherapies.


Obesity ◽  
2013 ◽  
Vol 21 (7) ◽  
pp. 1389-1395 ◽  
Author(s):  
Maria Rita De Giorgio ◽  
Mayumi Yoshioka ◽  
Isabelle Riedl ◽  
Olivier Moreault ◽  
Rose-Guerline Cherizol ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1505
Author(s):  
Abdelaziz Ghanemi ◽  
Mayumi Yoshioka ◽  
Jonny St-Amand

Trefoil Factor Family Member 2 (TFF2) belongs to TFF family peptides that includes TFF1, TFF2, TFF3. TFF2 is mainly known for its roles in the mucosal protection. In the context of obesity and high fat diet (HFD), Tff2 has been characterized as a HFD-induced gene. The knock-out of Tff2 in mice lead to the protection from HFD-induced obesity with a metabolic profile towards a negative energy balance. Such HFD-specific expression gives Tff2 a pattern worth exploring in biomedical research. Indeed, measuring TFF2/TFF2/Tff2 expression in biological samples following the ingestion of high-fat diet reflects the biological “responsiveness” to the lipids ingestion and would reflect the severity of obesity establishment afterwards. Such property could be explored for instance to screen animal models, evaluate the predisposition to HFD-induced obesity as well as in biomedical and clinical applications. Results might advance obesity research especially in terms of understanding lipid-induced signals, appetite control and adiposity storage.


2007 ◽  
Vol 292 (2) ◽  
pp. E561-E570 ◽  
Author(s):  
G.-Q. Chang ◽  
O. Karatayev ◽  
R. Ahsan ◽  
V. Gaysinskaya ◽  
Z. Marwil ◽  
...  

The opioid peptides enkephalin (ENK) and dynorphin (DYN), when injected into the hypothalamus, are known to stimulate feeding behavior and preferentially increase the ingestion of a high-fat diet. Studies of another peptide, galanin (GAL), with similar effects on feeding demonstrate that a high-fat diet, in turn, can stimulate the expression of this peptide in the hypothalamus. The present study tested different diets and variable periods of high- vs. low-fat diet consumption to determine whether the opioid peptides respond in a similar manner as GAL. In six experiments, the effects of dietary fat on ENK and DYN were examined in three hypothalamic areas: the paraventricular nucleus (PVN), perifornical hypothalamus (PFH), and arcuate nucleus (ARC). The results demonstrated that the ingestion of a high-fat diet increases gene expression and peptide levels of both ENK and DYN in the hypothalamus. The strongest and most consistent effect is seen in the PVN. In this nucleus, ENK and DYN are increased by 50–100% after 1 wk, 1 day, 60 min, and even 15 min of high-fat diet consumption. While showing some effect in the PFH, these peptides in the ARC are considerably less responsive, exhibiting no change in response to the briefer periods of diet intake. This effect of dietary fat on PVN opioids can be observed with diets equal in caloric density and palatability and without a change in caloric intake, body weight, fat pad weight, or levels of insulin or leptin. The data reveal a strong and consistent association between these peptides and a rise in circulating levels of triglycerides, supporting a role for these lipids in the fat-induced stimulation of opioid peptides in the PVN, similar to GAL.


2020 ◽  
Vol 3 (4) ◽  
pp. 583-597
Author(s):  
Nayara Braga Emidio ◽  
Stuart M. Brierley ◽  
Christina I. Schroeder ◽  
Markus Muttenthaler

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1646
Author(s):  
Abdelaziz Ghanemi ◽  
Mayumi Yoshioka ◽  
Jonny St-Amand

Trefoil factor family member 2 (TFF2) is known for its involvement in mucosal repair. Whereas it is overexpressed during inflammatory processes, adding TFF2 leads to an anti-inflammatory effect that would contribute to create the microenvironment required for tissue repair. These properties present TFF2 with a homeostatic pattern during inflammatory processes as illustrated by selected examples.


1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 723-P
Author(s):  
LINGWANG AN ◽  
DANDAN WANG ◽  
XIAORONG SHI ◽  
CHENHUI LIU ◽  
KUEICHUN YEH ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin A. H. Jensen ◽  
Jacob B. Holm ◽  
Ida S. Larsen ◽  
Nicole von Burg ◽  
Stefanie Derer ◽  
...  

AbstractInteractions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.


Sign in / Sign up

Export Citation Format

Share Document