scholarly journals Untargeted Microbial Exometabolomics and Metabolomics Analysis of Helicobacter pylori J99 and jhp0106 Mutant

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 808
Author(s):  
Cheng-Yen Kao ◽  
Pei-Yun Kuo ◽  
Hsiao-Wei Liao

Untargeted metabolomic profiling provides the opportunity to comprehensively explore metabolites of interest. Herein, we investigated the metabolic pathways associated with Jhp0106, a glycosyltransferase enzyme in Helicobacter pylori. Through untargeted exometabolomic and metabolomic profiling, we identified 9 and 10 features with significant differences in the culture media and pellets of the wild-type (WT) J99 and jhp0106 mutant (Δjhp0106). After tentative identification, several phosphatidylethanolamines (PEs) were identified in the culture medium, the levels of which were significantly higher in WT J99 than in Δjhp0106. Moreover, the reduced lysophosphatidic acid absorption from the culture medium and the reduced intrinsic diacylglycerol levels observed in Δjhp0106 indicate the possibility of reduced PE synthesis in Δjhp0106. The results suggest an association of the PE synthesis pathway with flagellar formation in H. pylori. Further investigations should be conducted to confirm this finding and the roles of the PE synthesis pathway in flagellar formation. This study successfully demonstrates the feasibility of the proposed extraction procedure and untargeted exometabolomic and metabolomic profiling strategies for microbial metabolomics. They may also extend our understanding of metabolic pathways associated with flagellar formation in H. pylori.

2012 ◽  
Vol 80 (7) ◽  
pp. 2286-2296 ◽  
Author(s):  
William E. Sause ◽  
Andrea R. Castillo ◽  
Karen M. Ottemann

ABSTRACTThe human pathogenHelicobacter pyloriemploys a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced geneHP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenicH. pylorimutant that lacksHP0289and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-typeH. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that theHP0289promoter is upregulated in the mouse stomach, and here we demonstrate thatHP0289expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that theHP0289mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-typeH. pylori. On the basis of this phenotype, we renamed HP0289 ImaA forimmunomodulatoryautotransporter protein. Our work has revealed that genes inducedin vivoplay an important role inH. pyloripathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allowH. pylorito fine tune the host immune response based on ImaA expression.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2004 ◽  
Vol 72 (9) ◽  
pp. 5506-5510 ◽  
Author(s):  
John T. Loh ◽  
Mark H. Forsyth ◽  
Timothy L. Cover

ABSTRACT LuxS plays a role in the synthesis of an extracellular signaling molecule, autoinducer 2 (AI-2). To analyze a possible role of AI-2 in regulating Helicobacter pylori gene expression, we constructed a panel of transcriptional reporter strains. We show that the expression of H. pylori flaA is growth phase dependent and that flaA transcription increases in association with increased culture density. Mutating the luxS gene eliminates growth-phase-dependent control of flaA, and this growth phase dependence is restored when the luxS mutant strain is complemented with the wild-type luxS gene.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Julio Benites ◽  
Héctor Toledo ◽  
Felipe Salas ◽  
Angélica Guerrero ◽  
David Rios ◽  
...  

Infection byHelicobacter pyloriincreases 10 times the risk of developing gastric cancer. Juglone, a natural occurring 1,4-naphthoquinone, preventsH. pylorigrowth by interfering with some of its critical metabolic pathways. Here, we report the design, synthesis, andin vitroevaluation of a series of juglone derivatives, namely, 2/3-phenylaminojuglones, as potentialH. pylorigrowth inhibitors. Results show that 5 out of 12 phenylaminojuglones (at 1.5 μg/mL) were 1.5–2.2-fold more active than juglone. Interestingly, most of the phenylaminojuglones (10 out of 12) were 1.1–2.8 fold more active than metronidazole, a knownH. pylorigrowth inhibitor. The most active compound, namely, 2-((3,4,5-trimethoxyphenyl)amino)-5-hydroxynaphthalene-1,4-dione 7, showed significant higher halo of growth inhibitions (HGI = 32.25 mm) to that of juglone and metronidazole (HGI = 14.50 and 11.67 mm). Structural activity relationships of the series suggest that the nature and location of the nitrogen substituents in the juglone scaffold, likely due in part to their redox potential, may influence the antibacterial activity of the series.


2016 ◽  
Vol 85 (1) ◽  
Author(s):  
William E. Sause ◽  
Daniela Keilberg ◽  
Soufiane Aboulhouda ◽  
Karen M. Ottemann

ABSTRACT The human pathogen Helicobacter pylori uses the host receptor α5β1 integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with α5β1 integrin. Previously, imaA-null mutants were found to induce an elevated inflammatory response that was dependent on the cag PAI T4SS; here we extend those findings to show that the elevated response is independent of the CagA effector protein. To understand how ImaA could be affecting cag PAI T4SS activity at the host cell interface, we utilized the Phyre structural threading program and found that ImaA has a region with remote homology to bacterial integrin-binding proteins. This region was required for ImaA function. Unexpectedly, we observed that imaA mutants bound higher levels of α5β1 integrin than wild-type H. pylori, an outcome that required the predicted integrin-binding homology region of ImaA. Lastly, we report that ImaA directly affected the amount of host cell β1 integrin but not other cellular integrins. Our results thus suggest a model in which H. pylori employs ImaA to regulate interactions between integrin and the T4SS and thus alter the host inflammatory strength.


2003 ◽  
Vol 71 (5) ◽  
pp. 2920-2923 ◽  
Author(s):  
Amy E. Wanken ◽  
Tyrrell Conway ◽  
Kathryn A. Eaton

ABSTRACT Helicobacter pylori mutants deficient in 6-phosphogluconate dehydratase (6PGD) were constructed. Colonization densities were lower and minimum infectious doses were higher for mutant strains than for wild-type strains. In spite of better colonization, however, wild-type strains did not displace the mutant in cocolonization experiments. Loss of 6PGD diminishes the fitness of H. pylori in vivo, but the pathway is nonessential for colonization.


2012 ◽  
Vol 80 (4) ◽  
pp. 1593-1605 ◽  
Author(s):  
Mary Ann Pohl ◽  
Sabine Kienesberger ◽  
Martin J. Blaser

ABSTRACTLewis (Le) antigens are fucosylated oligosaccharides present in theHelicobacter pylorilipopolysaccharide. Expression of these antigens is believed to be important forH. pyloricolonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galTis essential for production of type 1 (Leaand Leb) antigens. The upstream genejhp0562, which is present in many but not allH. pyloristrains, is homologous to β-(1,3)galTbut is of unknown function. BecauseH. pyloridemonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5′ and 3′ ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galTnull mutant, but neither native nor recombinantjhp0562can. Mutagenesis ofjhp0562revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galTexpression in all wild-type (WT) and mutant strains tested, whereasjhp0562was not expressed injhp0562null mutants, as expected. Sincejhp0562unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whethergalT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed thatgalTis essential for Lebproduction. In total, these results demonstrate thatgalTandjhp0562have functions that cross the expected Le synthesis pathways and thatjhp0562provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes.


Biofilms ◽  
2004 ◽  
Vol 1 (2) ◽  
pp. 91-99 ◽  
Author(s):  
S. R. Schooling ◽  
U. K. Charaf ◽  
D. G. Allison ◽  
P. Gilbert

Biofilms are often considered as localized zones of high cell density. Quorum sensing provides a means for control of population processes and has been implicated in the regulation of biofilm activities. We present a role for quorum sensing in programmed detachment and dispersal processes. Biofilms of Pseudomonas aeruginosa PAO1 and its isogenic homoserine lactone (HSL) mutant P. aeruginosa PAO-JP2 were grown in batch culture on glass substrata; differences were found in the rate and extent of formation of biofilm. Climax communities were observed for PAO1 at 24 h. These were later accompanied by foaming, a drop in the surface tension of culture media and dispersal of the biofilm, after which no subsequent biofilm accretion occurred. PAO-JP2 cultures reformed biofilm post-detachment and did not foam. Prevention of biofilm reformation in the wild type was related to some component excreted into the culture medium. Rhamnolipid, a biosurfactant regulated by quorum sensing, was detected in PAO1 cultures. When rhamnolipid was added to freshly inoculated substrata, biofilm formation was inhibited. At 20 h, PAO1 biofilms were transferred to medium with added rhamnolipid: biofilm was relatively unaffected. Biofilm events were also studied in medium supplemented with N-butyryl-L-homoserine lactone, which is involved in the regulation of rhamnolipid synthesis. Both strains exhibited similar trends of rapid biofilm formation and dramatic changes in the rate and extent of biofilm accretion. In both cases, there was premature foaming, lowered surface tension and elevated rhamnolipid levels. A role for HSLs in maintenance of biofilm and events leading to dispersion of cells is proposed. This role would encompass dispersion but not necessarily detachment of cells from biofilm and supports a new function for rhamnolipid in pathogenesis, whereby rhamnolipid would promote the dissemination of cells from a nidus of infection.


2011 ◽  
Vol 79 (10) ◽  
pp. 4186-4192 ◽  
Author(s):  
Alison L. Every ◽  
Garrett Z. Ng ◽  
Caroline D. Skene ◽  
Stacey N. Harbour ◽  
Anna K. Walduck ◽  
...  

ABSTRACTWhile gastric adenocarcinoma is the most serious consequence ofHelicobacter pyloriinfection, not all infected persons develop this pathology. Individuals most at risk of this cancer are those in whom the bacteria colonize the acid-secreting region of the stomach and subsequently develop severe inflammation in the gastric corpus. It has been reported anecdotally that male mice become infected with greater numbers ofH. pyloribacteria than female mice. While investigating this phenomenon, we found that increasedH. pyloriinfection densities in male mice were not related to antibody production, and this phenomenon was not normalized by gonadectomy. However, the gastric pH in male 129/Sv mice was significantly elevated compared with that in female mice. Differences in colonization were evident within 1 day postinfection and significantly arose due to colonization of the gastric corpus region in male mice. This provided a potential model for comparing the effect of corpus colonization on the development of gastritis. This was explored using two models ofH. pylori-induced inflammation, namely, 2-month infections ofMuc1−/−mice and 6-month infections of wild-type 129/Sv mice. WhileH. pyloriinfection of female mice induced a severe, corpus-predominant atrophic gastritis, to our surprise, male mice developed minimal inflammation despite being colonized with significantly moreH. pyloribacteria than female controls. Thus, colonization of the gastric corpus in male mice was associated with a loss of inflammation in that region. The suppression of inflammation concomitant with infection of the gastric corpus in male mice demonstrates a powerful localized suppression of inflammation induced at sites ofH. pyloricolonization.


2009 ◽  
Vol 21 (06) ◽  
pp. 433-436
Author(s):  
Chi-Chang Lin ◽  
Sheng-Kai Li ◽  
Bor-Shyang Sheu ◽  
Hsien-Chang Chang

A simple, fast, real-time, and nondestructive analysis of protein expression in biological samples, such as membranes, based on dielectrophoresis is described. On the basis of the distinct differences in the dielectrophoretic properties of individual cell types, the wild-type BabA-positive Helicobacter pylori isolates and its BabA-negative isogenic mutant can be identified and separated. The herein-presented approach of using microelectrodes should be an easy-to-use, cheap, and rapid alternative to separate and distinguish the presence or absence of important outer-membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document