scholarly journals Major Nutritional Metabolic Alterations Influencing the Reproductive System of Postpartum Dairy Cows

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Abdul Sammad ◽  
Muhammad Zahoor Khan ◽  
Zaheer Abbas ◽  
Lirong Hu ◽  
Qudrat Ullah ◽  
...  

Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.

Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1419
Author(s):  
Osvaldo Bogado Pascottini ◽  
Jo L. M. R. Leroy ◽  
Geert Opsomer

All modern, high-yielding dairy cows experience a certain degree of reduced insulin sensitivity, negative energy balance, and systemic inflammation during the transition period. Maladaptation to these changes may result in excessive fat mobilization, dysregulation of inflammation, immunosuppression, and, ultimately, metabolic or infectious disease in the postpartum period. Up to half of the clinical diseases in the lifespan of high-yielding dairy cows occur within 3 weeks of calving. Thus, the vast majority of prospective studies on transition dairy cows are focused on the postpartum period. However, predisposition to clinical disease and key (patho)physiological events such as a spontaneous reduction in feed intake, insulin resistance, fat mobilization, and systemic inflammation already occur in the prepartum period. This review focuses on metabolic, adaptive events occurring from drying off until calving in high-yielding cows and discusses determinants that may trigger (mal)adaptation to these events in the late prepartum period.


2003 ◽  
Vol 46 (6) ◽  
pp. 513-526 ◽  
Author(s):  
R. Staufenbiel ◽  
U. Schröder ◽  
C.-C. Gelfert ◽  
L. Panicke

Abstract. Title of the paper: Body condition and metabolic stability as basis of high milk yield, reproductive performance, and general health in dairy cows The target of this study was to describe the interactions between body condition and various descriptors of yield and fertility. It was aimed to identify an optimal conditional range to be used in herd management which combines high milk yield with acceptable fertility traits and general health. For this purpose, backfat thickness was measured by ultrasound at 46111 dairy cows on 78 different farms and was subsequently related to production variables. Negative energy balance is getting more intense and prolonged with increasing milk yield. However a conditional nadir below 10 mm leads to decreased milk production. To reach a high production level without an increasing incidence of health disorders, conditional nadir should not decline below 13 mm backfat thickness on herd average. Lower value only lead to negligibly higher milk yield but cause a distinctively higher risk of fertility problems and culling. High herd yields do not have to be at expense of reproduction performance and can be achieved without extreme body condition losses. An efficient herd management can offset depression in fertility, which commonly is combined with increasing milk yield. It is suggested a standard curve for backfat thickness throughout lactation to be used in dairy herd management.


Proceedings ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 9
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna Weigand ◽  
Roberto Kappes ◽  
...  

Depending on the breed or crossbreed line, cows have to cope with a more or less severe negative energy balance during the period of high milk yields in early lactation, which can be detected by beta-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFAs) in blood. Preventing cows from undergoing a severe negative energy balance by breeding and/or feeding measures is likely to be supported by the public and may help to improve the sustainability of milk production. The aim was to compare BHBA and NEFA concentrations in the blood of Holstein and Simmental cows and their crosses during the prepartum period until the end of lactation. In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), F1 crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). NEFA and BHBA were evaluated once a week between April 2018 and August 2019. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect on cows was used. Holstein cows had higher NEFAs (0.196 ± 0.013 mmol/L), and Simmental cows had the lowest NEFA concentrations (0.147 ± 0.008 mmol/L, p = 0.03). R1-Sim, F1 and R1-Hol cows had intermediate values (0.166 ± 0.005, 0.165 ± 0.010, 0.162 ± 0.008 mmol/L; respectively). The highest NEFA value was found in the first week after calving (0.49 ± 0.013 mmol/L). BHBA did not differ among genetic groups (p = 0.1007). There was, however, an interaction between the genetic group and week (p = 0.03). While Simmental, R1-Sim and F1 cows had the highest BHBA value, the second week after calving (0.92 ± 0.07 and 1.05 ± 0.04, and 1.10 ± 0.10 mmol/L, respectively), R1-Hol and Holstein cows showed the BHBA peak at the fourth week after calving (1.16 ± 0.07 and 1.36 ± 0.12 mmol/L, respectively). Unexpectedly, Holstein cows had a high BHBA peak again at week 34 after calving (1.68 ± 0.21 mmol/L). The genetic composition of the cows affects NEFA and BHBA. Simmental and R1-Sim cows mobilize fewer body reserves after calving. Therefore, dairy cows with higher degrees of Simmental origin might be more sustainable in comparison with Holstein genetics in the present study.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 397-398
Author(s):  
Xiaoxia Dai ◽  
Kenneth Kalscheur ◽  
Pekka Huhtanen ◽  
Antonio Faciola

Abstract The effects of ruminal protozoa (RP) concentration on methane emissions from ruminants were evaluated in a meta-analysis using 67 publications reporting data from 85 in vivo experiments. Experiments included in the database reported methane emissions (g/kg DMI) and RP (log10 cells/mL) from the same group of animals. Quantitative data including diet chemical composition, ruminal fermentation, total tract digestibility, and milk production; and qualitative information including methane mitigation strategies, animal type, and methane measurement methods were also collected. The studies were conducted in dairy cows (51%), beef steers (32%) and small ruminants (32%). 70% of the studies reported a reduction in methane emissions. Supplemental lipids reduced methane emissions 95% of the time. The relationship between methane emissions and RP concentration was evaluated as a random coefficient model with the experiment as a random effect and weighted by the inverse pooled SEM squared, including the possibility of covariance between the slope and the intercept. A quadratic effect of RP concentration on methane emissions was detected: CH4= -28.8 + 12.2 × RP-0.64 × RP2. To detect potential interfering factors in the relationship, the influence of several qualitative and quantitative factors were separately tested. Acetate, butyrate, and isobutyrate molar proportions had positive relationships with methane emissions and influenced the relationship between RP concentration and methane emissions, where the presence of ruminal fermentation variables reduced the effects of RP concentration in methane emissions. Total tract digestibility of DM, OM, and CP had negative relationships while NDF digestibility had a positive relationship with methane emissions; however, they only changed the magnitude of intercept and slope of RP and RP2 for the relationship. For dairy cows, milk fat and protein concentrations had positive relationships and milk yield had a negative relationship with methane emissions and changed the magnitude of intercept and slope of RP and RP2 for the relationship.


2009 ◽  
Vol 57 (1) ◽  
pp. 139-146
Author(s):  
Andrea Győrffy ◽  
Mónika Keresztes ◽  
Vera Faigl ◽  
Vilmos Frenyó ◽  
Margit Kulcsár ◽  
...  

In the regulation of energy metabolism, the liver plays an important role in the reinforcement of energy production. In periparturient cows the energy homeostasis turns into a negative energy balance that may shift the physiological regulation of energy balance towards pathological processes. Propylene glycol (PG), as a complementary source of energy used in the nutrition of dairy cows, alters systemic thyroid hormone economy; however, the exact mechanism through which highly glycogenic feed supplements impact liver metabolism is little known. Previous studies showed that only leptin receptors are expressed in the liver of cows, and now we report that leptin mRNA is expressed in the liver of cows as well. The present results show that the mRNA of leptin and its receptors are differentially modulated by the increased energy content of the feed consumed. Simultaneous changes in hepatic type I deiodinase activity suggest that hepatic modulation of the leptin system by PG supplementation may be mediated by an increased local thyroxine-triiodothyronine conversion. Since PG supplementation with simultaneous T4–T3 turnover and increased hepatic leptin- and short-form leptin receptor mRNA were not associated with a significant change in hepatic total lipid levels, it is suggested that the leptin system, directly or indirectly modulated by thyroid hormones, may represent a local defence mechanism to prevent fatty liver formation.


2017 ◽  
Vol 18 (0) ◽  
Author(s):  
Elisa Sierra Montoya ◽  
Julian David Chará ◽  
Rolando Barahona-Rosales

Abstract A study was carried out to estimate the balance of metabolizable protein (MP), metabolizable energy (ME), calcium, and phosphorus in 12 recently calved (RC) and early lactation (EL, 42 - 50 days after calving) Gyr x Holstein dairy cows grazing in a Leucaena leucocephala and Cynodon plectostachyus intensive silvopastoral system (ISS) and receiving energy and protein supplementation. Dry matter (DM) availability from the grazing paddocks, nutrients offered and their balance were estimated. On average, the available forage DM per animal.day-1 was 44.7 kg for C. plectostachyus and 11.8 kg for L. leucocephala. EL cows had greater requirements of MP, ME, and minerals than RC cows. In RC cows, ME, MP, and mineral requirements were supplied by the total diet, while EL cows exhibited a negative energy balance. For both RC and EL cows, ME was the limiting dietary factor, whereas MP and P were found to be in excess. If cows were only to receive ISS forages with no supplementation, estimated daily milk yield would be 10 and 12 litters for RC and EL cows, respectively. Under tropical conditions, based on ISS forage intake, RC and EL cows can meet most of their ME, MP, calcium, and phosphorous requirements.


Sign in / Sign up

Export Citation Format

Share Document