scholarly journals Synthesis and Applications of Silver Nanowires for Transparent Conductive Films

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 330 ◽  
Author(s):  
Yue Shi ◽  
Liang He ◽  
Qian Deng ◽  
Quanxiao Liu ◽  
Luhai Li ◽  
...  

Flexible transparent conductive electrodes (TCEs) are widely applied in flexible electronic devices. Among these electrodes, silver (Ag) nanowires (NWs) have gained considerable interests due to their excellent electrical and optical performances. Ag NWs with a one-dimensional nanostructure have unique characteristics from those of bulk Ag. In past 10 years, researchers have proposed various synthesis methods of Ag NWs, such as ultraviolet irradiation, template method, polyol method, etc. These methods are discussed and summarized in this review, and we conclude that the advantages of the polyol method are the most obvious. This review also provides a more comprehensive description of the polyol method for the synthesis of Ag NWs, and the synthetic factors including AgNO3 concentration, addition of other metal salts and polyvinyl pyrrolidone are thoroughly elaborated. Furthermore, several problems in the fabrication of Ag NWs-based TCEs and related devices are reviewed. The prospects for applications of Ag NWs-based TCE in solar cells, electroluminescence, electrochromic devices, flexible energy storage equipment, thin-film heaters and stretchable devices are discussed and summarized in detail.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Cheng-Tang Pan ◽  
Tsung-Lin Yang ◽  
Yi-Chian Chen ◽  
Cherng-Yuh Su ◽  
Shin-Pon Ju ◽  
...  

The silver nanowires (AgNWs) and silver nanoparticles (AgNPs) were synthesized. With near-field electrospinning (NFES) process, fibers and thin films with AgNPs and AgNWs were fabricated. In the NFES process, 10 k voltage was applied and the AgNPs and AgNWs fibers can be directly orderly collected without breaking and bending. Then, the characteristics of the fibers were analyzed by four-point probe and EDS. The conductive film was analyzed. When the thickness of films with AgNWs and AgNPs was 1.6 µm, the sheet resistance of films was 0.032 Ω/sq which was superior to that of the commercial ITO. The transmissivity of films was analyzed. The transmissivity was inversely proportional to sheet resistance of the films. In the future, the fibers and films can be used as transparent conductive electrodes.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2167
Author(s):  
Junaidi Junaidi ◽  
Muhamad Wahyudi Saputra ◽  
Roniyus Marjunus ◽  
Simon Sembiring ◽  
Sutopo Hadi

This study aims to determine the effect of fast cooling (quenching) on thermal properties, mechanical strength, morphology and size of the AgNWs. The synthesis of AgNWs was carried out at three different quenching-medium temperatures as follows: at 27 °C (ambient temperature), 0 °C (on ice), and −80 °C (in dry ice) using the polyol method at 130 °C. Furthermore, the AgNWs were sonified for 45 min to determine their mechanical strength. Scanning electron microscopy analysis showed that the quenched AgNWs had decreased significantly; at 27 °C, the AgNWs experienced a change in length from (40 ± 10) to (21 ± 6) µm, at 0 °C from (37 ± 8) to (24 ± 8) µm, and at −80 °C from (34 ± 9) to (29 ± 1) µm. The opposite occurred for their diameter with an increased quenching temperature: at 27 °C from (200 ± 10) to (210 ± 10) nm, at 0 °C from (224 ± 4) to (239 ± 8) nm, and at −80 °C from (253 ± 6) to (270 ± 10) nm. The lower the temperature of the quenching medium, the shorter the length and the higher the mechanical strength of AgNWs. The UV-Vis spectra of the AgNWs showed peak absorbances at 350 and 411 to 425 nm. Thermogravimetric analysis showed that AgNWs quenched at −80 °C have better thermal stability as their mass loss was only 2.88%, while at the quenching temperatures of 27 °C and 0 °C the mass loss was of 8.73% and 4.17%, respectively. The resulting AgNWs will then be applied to manufacture transparent conductive electrodes (TCEs) for optoelectronic applications.


2019 ◽  
Vol 20 (11) ◽  
pp. 2803
Author(s):  
Yuehui Wang ◽  
Xing Yang ◽  
Dexi Du ◽  
Yuzhen Zhao ◽  
Xianfeng Zhang

Flexible transparent conductive films (FTCFs) composed of silver nanowires (AgNWs) have become an important research direction because of their potential in flexible electronic devices. The optoelectronic properties of FTCFs composed of AgNWs of different lengths were evaluated in this study. AgNWs, with an average diameter of about 25 nm and length of 15.49–3.92 μm were obtained by a sonication-induced scission process. AgNW-FTCFs were prepared on polyethylene terephthalate substrates using a Meyer bar and then dried in the ambient environment. The sheet resistance, non-uniformity factor of the sheet resistance, the root mean square roughness, and haze of the FTCFs increased as the length of AgNWs decreased. The transmittance of the films increased slightly as the length of AgNWs increased. AgNWs with a length of 15.49 μm provided an AgNW-FTCF with excellent properties including haze of 0.95%, transmittance of 93.42%, and sheet resistance of 80.15 Ω∙sq−1, without any additional post-treatment of the film. This work investigating the dependence of the optoelectronic properties of AgNW-FTCFs on AgNW length provides design guidelines for development of AgNW-FTCFs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1139
Author(s):  
Lin Cao ◽  
Qin Huang ◽  
Jie Cui ◽  
Huaijun Lin ◽  
Wei Li ◽  
...  

Silver nanowires are receiving increasing attention as a kind of prospective transparent and conductive material. Here, we successfully synthesized high-performance silver nanowires with a significantly decreased reaction time by a modified polyol method. The synthesis process involved the addition of halides, including NaCl and NaBr, to control the release rate of Ag+ ions, as Cl− and Br− ions react with Ag+ ions to form AgCl and AgBr with different solubilities. As a result, Ag+ ions could be slowly released by graded dissolution, and the formation of silver nanowires was promoted. The results showed that the concentration of the added halides played an important role in the morphology of the final product. High-quality silver nanowires with an average diameter of 70 nm and average length of 21 μm were obtained by optimizing the reaction parameters. Afterwards, a simple silver nanowire coating was applied in order to fabricate the transparent conductive films. The film that was based on the silver nanowires provided a transmittance of 91.2% at the 550 nm light wavelength and a sheet resistance of about 78.5 Ω·sq−1, which is promising for applications in flexible and transparent optoelectronic devices.


2021 ◽  
Author(s):  
Yuxin Tang ◽  
Wanying Yin ◽  
Yue Huang ◽  
Ganghua Zhang ◽  
Qingbiao Zhao ◽  
...  

Silver nanowires (AgNWs) network has shown great promise as transparent conductive films (TCFs) due to its excellent optoelectronic performance. In order to replace indium tin oxide (ITO), considerable intricate methods...


APL Materials ◽  
2017 ◽  
Vol 5 (8) ◽  
pp. 080701 ◽  
Author(s):  
Hae-Won Jang ◽  
Yong-Hoe Kim ◽  
Ki-Wook Lee ◽  
Yoon-Mi Kim ◽  
Jin-Yeol Kim

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Mini Mol Menamparambath ◽  
C. Muhammed Ajmal ◽  
Kwang Hee Kim ◽  
Daejin Yang ◽  
Jongwook Roh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document