scholarly journals Characterization of Stereolithography Printed Soft Tooling for Micro Injection Molding

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 819 ◽  
Author(s):  
Daniel Dempsey ◽  
Sean McDonald ◽  
Davide Masato ◽  
Carol Barry

The use of microfeature-enabled devices, such as microfluidic platforms and anti-fouling surfaces, has grown in both potential and application in recent years. Injection molding is an attractive method of manufacturing these devices due to its excellent process throughput and commodity-priced raw materials. Still, the manufacture of micro-structured tooling remains a slow and expensive endeavor. This work investigated the feasibility of utilizing additive manufacturing, specifically a Digital Light Processing (DLP)-based inverted stereolithography process, to produce thermoset polymer-based tooling for micro injection molding. Inserts were created with an array of 100-μm wide micro-features, having different heights and thus aspect ratios. These inserts were molded with high flow polypropylene to investigate print process resolution capabilities, channel replication abilities, and insert wear and longevity. Samples were characterized using contact profilometry as well as optical and scanning electron microscopies. Overall, the inserts exhibited a maximum lifetime of 78 molding cycles and failed by cracking of the entire insert. Damage was observed for the higher aspect ratio features but not the lower aspect ratio features. The effect of the tool material on mold temperature distribution was modeled to analyze the impact of processing and mold design.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prasanta Kumar Mohanta ◽  
B. T. N. Sridhar ◽  
R. K. Mishra

Abstract Experiments and simulations were carried on C-D nozzles with four different exit geometry aspect ratios to investigate the impact of supersonic decay characteristics. Rectangular and elliptical exit geometries were considered for the study with various aspect ratios. Numerical simulations and Schlieren image study were studied and found the agreeable logical physics of decay and spread characteristics. The supersonic core decay was found to be of different length for different exit geometry aspect ratio, though the throat to exit area ratio was kept constant to maintain the same exit Mach number. The impact of nozzle exit aspect ratio geometry was responsible to enhance the mixing of primary flow with ambient air, without requiring a secondary method to increase the mixing characteristics. The higher aspect ratio resulted in better mixing when compared to lower aspect ratio exit geometry, which led to reduction in supersonic core length. The behavior of core length reduction gives the identical signature for both under-expanded and over-expanded cases. The results revealed that higher aspect ratio of the exit geometry produced smaller supersonic core length. The aspect ratio of cross section in divergent section of the nozzle was maintained constant from throat to exit to reduce flow losses.


2006 ◽  
Vol 505-507 ◽  
pp. 229-234 ◽  
Author(s):  
Yung Kang Shen ◽  
H.J. Chang ◽  
C.T. Lin

The purpose of this paper presents the optical properties of microstructure of lightguiding plate for micro injection molding (MIM) and micro injection-compression molding (MICM). The lightguiding plate is applied on LCD of two inch of digital camera. Its radius of microstructure is from 100μm to 300μm by linearity expansion. The material of lightguiding plate uses the PMMA plastic. This paper uses the luminance distribution to make a comparison between MIM and MICM for the optical properties of lightguiding plate. The important parameters of process for optical properties are the mold temperature, melt temperature and packing pressure in micro injection molding. The important parameters of process for optical properties are the compression distance, mold temperature and compression speed in micro injection-compression molding. The process of micro injection-compression molding is better than micro injection molding for optical properties.


1983 ◽  
Vol 4 ◽  
pp. 180-187 ◽  
Author(s):  
B. Michel ◽  
D. Blanchet

The problem of a floating ice sheet hitting a structure with a vertical face appears to be a simple one but, in fact, has only been solved for a limited number of cases. Research work on this question usually reports on an indentation coefficient which relates the average pressure on the indenter to the uniaxial crushing strength of the ice. Very few tests have been made in the brittle range of ice failure. In this particular area of study, this paper reports on 27 tests that were conducted in a cold-room water basin where controlled S2floating ice sheets were produced with a surface area of 4 × 4 m, three sides being fully restrained and the other, freely float! no, being submitted to the impact of the moving indenter. All tests were carried out at computed indentation rates varying from 0.017 to 0.34 s-1. In this range this ice would normally be considered to act as a brittle material. The thickness of the ice sheets varied from 1.2 to 9.0 cm and the indenter width from 5 cm to 1 m. Overall, the aspect ratio relating these two parameters could be varied from 0.5 to 83.Results have shown that for aspect ratios <5, there was an important oscillatory effect which caused the formation of pi asti fi ed triangles in front of the indenter, increasing its resistance as it would under ductile conditions. Because of this plastification, an extrusion effect appeared in front of the indenter as the broken ice crystals were blown up and down in front of the fast-moving indenter. The theory of plasticity which gives an indentation coefficient of 2.97 seems to apply in this case. Another mode of failure which occurred with aspect ratios 5 was cleavage in the plane of the ice sheet which also gives a higher indentation coefficient for S2ice, but of the same order of magnitude as previously.For intermediate values of the aspect ratio, between 5 and 20, the theory of elasticity used by Michel (1978) seems to apply well. Shear cracks are first formed on both sides of the square indenter and control the maximum pressure when they propagate inside forming big triangles in front of it.Finally, for aspect ratios ~>20, buckling of the ice occurs, either after or at the same time as the formation of wedges, together with a reduction in the indentation coefficient to a value close to that given by the theory of buckling of a truncated 45° wedge with a hinged edge.


2012 ◽  
Vol 184-185 ◽  
pp. 1651-1654
Author(s):  
Jeou Long Lee ◽  
Y. Lin ◽  
Y.K. Shen

This study characterizes warpage of a micro-injection molded micro electrical fan using the Michelson interference method. This study conducts experiments to analyze different polymers-polypropylene (PP), polyamide (PA), acrylonitrile-butadiene styrene (ABS), ABS+ polycarbonate (PC), and polyoxymethylene (POM)-process parameters, such as mold temperature, injection temperature, injection pressure, injection time, packing time, and packing pressure, for a micro electrical fan. To obtain the optimum result (minimum warpage), this study assesses the effect (warpage) of each material on micro-injection molding. PA plastic is the very suitable material for micro electrical fan with Michelson interference analysis on micro-injection molding.


Author(s):  
Sung-Hwan Yoon ◽  
Prabhu Palanisamy ◽  
Purushotham Padmanabha ◽  
Joey L. Mead ◽  
Carol M. F. Barry

Although high aspect ratio micro and nanoscale polymer features have been replicated in a range of polymers using injection molding, researchers have also used tooling inserts with a range of sizes, aspect ratios, and tooling materials. In this work, microscale features with molded in polymethylmethacrylates using three types of tooling with similar features. The tooling materials included silicon wafers with an antistiction coating, gold-coated nickel inserts, and a metal-polymer hybrid tooling. Tooling was evaluated based on the ease of melt filling and part ejection; the replication quality as characterized using optical profilometry, confocal microscopy, and scanning electron microscopy; and the damage to the tooling after repeated use. With lower aspect ratio features, the tooling type did not significantly affect replication, but for higher aspect ratio features the hybrid tooling provided far better replication than the silicon tooling. This difference was attributed to retardation of heat transfer in the features of the hybrid tooling. All three tooling materials exhibited polymer-free surfaces after injection molding.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zhihang Hu ◽  
Yuying Ning ◽  
Jiuyang Zhang ◽  
Jianyu Zhao

Under impact load, the dynamic mechanical properties of rock are complex and changeable. The Split Hopkinson Pressure Bar (SHPB) system was used to change the impact load to carry out different strain rate loading tests on granite with different aspect ratios, and to analyze the influence of strain rate and aspect ratio on the dynamic energy consumption of granite crushing. The results show that at an impact velocity of 14 m/s, the granite with an aspect ratio of 1.4 appears to be strip-shaped fragments after being broken; the granite with an aspect ratio of 1.0 uniform square fragments after being broken; the granite with an aspect ratio of 0.6 appears to be a large number of flat fragments after being broken. When the load strain rate of the granite with an aspect ratio of 0.6 increases from 50 s-1 to 150 s-1, the energy-time density index increases significantly; when the load strain rate exceeds 150 s-1, the energy-time density index decreases. When the strain rate of granite with an aspect ratio of 1.0 exceeds 80 s-1, the energy-time density increases significantly. When the strain rate of the granite with an aspect ratio of 1.4 exceeds 60 s-1, the rate of increase of the energy-time density of the rock increases significantly.


2015 ◽  
Vol 1103 ◽  
pp. 77-83 ◽  
Author(s):  
Michael Heinrich ◽  
Ricardo Decker ◽  
Joerg Schaufuss ◽  
Juergen Troeltzsch ◽  
Jan Mehner ◽  
...  

The investigations carried out under this work dealing with a new field of application for large-scale production of electric contacting processes for micro-electro-mechanical systems (MEMS) using the micro-injection molding technology. The focus of this article is the analysis of process-related influential factors of micro-injection molding that determines both the electrical resistivity and the flowability of polymer nanocomposites filled with carbon nanotubes (CNT) and carbon black (CB). For that, the viscosity and the electrical conductivity as a function of different CNT-and CB-contents and their combination were investigated in a manufacturing study for Polypropylene. The results of the investigations answered questions regarding material science and technical processes. By this, optimal rheological properties for formation of micro injection molded conductive patterns with high aspect ratios on the one side and with the best possible conductivity of the nanocomposites on the other side can be set.


Sign in / Sign up

Export Citation Format

Share Document