scholarly journals Coatings with recycled polyvinyl butyral on polyester and polyamide mono- and multifilament yarns

Author(s):  
Rike Brendgen ◽  
Carsten Graßmann ◽  
Thomas Grethe ◽  
Boris Mahltig ◽  
Anne Schwarz-Pfeiffer

AbstractPolyvinyl butyral is used in safety glass interlayers, mainly in car windshields. Legislative regulations require a recycling of cars after their lifetime and therefore also their safety glass. This causes the availability of recycled polyvinyl butyrate (r-PVB) originated from safety glass interlayers. Due to deteriorated optical properties, such as the transparency, and unknown amounts of plasticizers, it is challenging to reuse the recycled material in new windshields. Therefore, it is of particular interest to find new fields of application for r-PVB, such as the usage as a textile coating. In this research, r-PVB was investigated as a material for yarn coating. Polyester and polyamide mono- and multifilament yarns were coated continuously with solely a polymer dispersion and with mixtures of crosslinking agent and polymer dispersion. Crosslinked r-PVB coatings showed enhanced properties toward abrasion and chemical resistance. Coatings without the crosslinking agent showed a diminished abrasion resistance and could be washed off with ethanol. Mechanical properties of the monofilaments were influenced by the r-PVB coating in general. However, varying concentrations of the crosslinking agent did not affect the mechanical properties.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 832
Author(s):  
Mohammad Mirazul Islam ◽  
Dina B. AbuSamra ◽  
Alexandru Chivu ◽  
Pablo Argüeso ◽  
Claes H. Dohlman ◽  
...  

Collagen scaffolds, one of the most used biomaterials in corneal tissue engineering, are frequently crosslinked to improve mechanical properties, enzyme tolerance, and thermal stability. Crosslinkers such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) are compatible with tissues but provide low crosslinking density and reduced mechanical properties. Conversely, crosslinkers such as glutaraldehyde (GTA) can generate mechanically more robust scaffolds; however, they can also induce greater toxicity. Herein, we evaluated the effectivity of double-crosslinking with both EDC and GTA together with the capability of sodium metabisulfite (SM) and sodium borohydride (SB) to neutralize the toxicity and restore biocompatibility after crosslinking. The EDC-crosslinked collagen scaffolds were treated with different concentrations of GTA. To neutralize the free unreacted aldehyde groups, scaffolds were treated with SM or SB. The chemistry involved in these reactions together with the mechanical and functional properties of the collagen scaffolds was evaluated. The viability of the cells grown on the scaffolds was studied using different corneal cell types. The effect of each type of scaffold treatment on human monocyte differentiation was evaluated. One-way ANOVA was used for statistical analysis. The addition of GTA as a double-crosslinking agent significantly improved the mechanical properties and enzymatic stability of the EDC crosslinked collagen scaffold. GTA decreased cell biocompatibility but this effect was reversed by treatment with SB or SM. These agents did not affect the mechanical properties, enzymatic stability, or transparency of the double-crosslinked scaffold. Contact of monocytes with the different scaffolds did not trigger their differentiation into activated macrophages. Our results demonstrate that GTA improves the mechanical properties of EDC crosslinked scaffolds in a dose-dependent manner, and that subsequent treatment with SB or SM partially restores biocompatibility. This novel manufacturing approach would facilitate the translation of collagen-based artificial corneas to the clinical setting.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček ◽  
Ondřej Kratina

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


1994 ◽  
Vol 67 (2) ◽  
pp. 342-347
Author(s):  
Moira Marx Nir ◽  
Robert E. Cohen

Abstract Tensile failure properties of syndiotactic 1,2 polybutadiene/trans 1,4 polybutadiene crystalline blends are improved by addition of 5–10% amorphous 1,2 polybutadiene/1,4 polybutadiene diblock copolymer. The effect of block molecular weight and microphase behavior of the diblock copolymer was investigated. Heterogeneous diblocks enhance blend properties to a greater extent than homogeneous diblocks. In blends with enhanced properties, percent coverage of interfacial surface area by diblock is on the order of 10%.


2011 ◽  
Vol 6 (3) ◽  
pp. 155892501100600 ◽  
Author(s):  
Eric Devaux ◽  
Carole Aubry ◽  
Christine Campagne ◽  
Maryline Rochery

Polylactide (PLA) was mixed with 4 wt.% of carbon nanotubes (CNTs) to produce electrical conductive multifilament yarns by melt spinning process for humidity detection. Thanks to a variation of electrical conductivity, this flexible sensor could detect the moisture presence. The introduction of plasticizer was necessary to ensure higher fluidity and drawability of the blend during the spinning process. The plasticizer modifies the crystallinity and the mechanical properties of the yarns. The effectiveness of this sensor (PLA/4 wt.% CNTs fibres) sensitive to humidity, is optimal when the spinning conditions are adapted. In this way, the temperature and the rate of the drawing roll were reduced. The influence of these parameters on the crystallinity, the mechanical properties and the sensitivity of the yarns were studied. Once the appropriate spinning conditions found, one humidity sensitive yarn was processed and the repeatability and efficient reversibility of its sensitivity were highlighted.


2019 ◽  
pp. 7-8
Author(s):  
M. M. Egorov ◽  
V. I. Milov ◽  
M. K. Timin ◽  
T. P. Mukhina ◽  
V. S. Smirnov ◽  
...  

The effect of pressure, temperature and time during direct pressing on the strength and optical characteristics of adhesive plasticized polyvinyl butyral films is studied. A mathematical analysis of the results of a full factorial experiment is carried out and the regression equations are derived.


2020 ◽  
Vol 4 (1) ◽  
pp. 53
Author(s):  
Fadhil Muhammad Tarmidzi ◽  
Inggit Kresna Maharsih ◽  
Tina Raihatul Jannah ◽  
Cici Sari Wahyuni

Teknik pembalutan luka saat ini menerapkan metode perawatan luka modern dengan cara mempertahankan isolasi lingkungan luka dalam keadaan tertutup dan lembab. Ada beberapa jenis pembalut luka yang telah dikembangkan, salah satunya hidrogel. Hidrogel merupakan pembalut luka berbentuk lembaran yang memiliki kemampuan menyerap cairan luka dan memiliki stabilitas yang baik pada pH asam sehingga dapat digunakan untuk pengobatan luka bakar. Dalam penelitian ini, hidrogel dibuat menggunakan polimer alami seperti pektin dan gelatin. Kedua bahan tersebut dikombinasikan menggunakan metode ikatan silang dengan penambahan asam sitrat sebagai agen pengikat silang. Penambahan asam sitrat memberikan pengaruh terhadap karakteristik material hidrogel yang dihasilkan, sehingga diperlukan jumlah yang tepat agar didapatkan hidrogel dengan properti material yang baik. Hidrogel juga ditambahkan zat aktif berupa flavonoid pada ekstrak kulit buah naga agar dapat digunakan sebagai pembalut luka untuk menyembuhkan luka bakar. Dari hasil penelitian, hidrogel dengan konsentrasi asam sitrat 4% (Hidrogel CA 4%) menghasilkan nilai swelling, tensile strength, dan elongation tertinggi sebesar 890%, 0,05 Mpa, dan 200%. Hasil properti mekanik dari Hidrogel CA 4% ini dibuktikan dengan uji FTIR yang telah dilakukan, yaitu munculnya gugus karbonil C=O sebagai hasil reaksi esterifikasi yang terjadi antara polimer dengan asam sitrat di daerah serapan 1733,9 cm-1.Wound dressing technique currently applies modern wound care methods by maintaining the environmental isolation of the wound in a closed and moist state. There are several types of wound dressing that have been developed, one of them is hydrogel. Hydrogel is sheet-shaped wound dressings which have the ability to absorb exudate and have good stability acidic pH that can be used for the treatment of burns. In this study, hydrogel were made using natural polymers such as pectin and gelatin. The two polymers were combined using crosslinking method with the addition of citric acid as a crosslinking agent. The addition of citric acid has affect on the characteristics of the hydrogel material produced, therefore the right amount is needed to obtain a hydrogel with good mechanical properties. Hydrogel also added by an active substance in the form of flavonoids from dragon fruit peel extract that can be used as a wound dressing to cure burns. This study resulting hydrogel with a concentration of 4% citric acid (Hydrogel CA 4%) produced highest value of swelling, tensile strength, and elongation are 890%, 0.05 Mpa, and 200%, repectively. The mechanical properties of Hydrogel CA 4% was proved by FTIR test that had been carried out, namely the presence of C=O carbonyl group as a result of the esterification reaction that occurred between the polymers and citric acid in the absorption area of 1733.9 cm-1.


2015 ◽  
Vol 16 (3) ◽  
pp. 528-533
Author(s):  
G. Martinyuk ◽  
O. Aksimentyeva ◽  
N. Skoreiko ◽  
V. Zakordonskyi

We investigated the processes of water absorption, chemical stability and microhardness of films of epoxy composites that contained as the polymer matrix the epoxy resin UP-655 and mineral fillers: graphite, mica, aluminum oxide at their content (0 - 30 % mass). It found that introduction of mineral fillers significantly affects on all complex of operating characteristics of the films. Increase of filler content, especially mica, to 20 %, resulting in slower process and reducing the quantity of absorbed moisture by films. In the study of physical and mechanical properties of filled epoxy composites was established that the introduction of mineral filler significantly affects their microhardness, and the nature of the exposure is determined by the type and filler content.


2021 ◽  
Vol 1167 ◽  
pp. 23-33
Author(s):  
Alaa A. Mohammed

Polyetheretherketone (PEEK) is a semicrystalline thermoplastic polymer with high chemical resistance, thermal stability and excellent mechanical properties. In the present work, neat PEEK and 3% bioactive glass/PEEK composites were annealed at various temperatures (100 °C, 200 °C and 300 °C) for (30 and 60) min and characterized with mechanical and density tests, differential scanning calorimetery and Fourier transform infrared spectroscopy. Results manifested bioactive glass powder enhanced the properties of the PEEK matrix. Thermal annealing at (200 and 300 °C) had a positive influence on the mechanical properties and density owing to increase in the level of crystallinity, whereas annealing at (100 °C) had not effect on the properties.


Sign in / Sign up

Export Citation Format

Share Document