scholarly journals Experimental Research on Deep-And-Narrow Micromilled Grooves Using a Self-Fabricated PCD Micro-Cutter

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1170
Author(s):  
Jinjin Han ◽  
Rui Ma ◽  
Xiuqing Hao ◽  
Linglei Kong ◽  
Ni Chen ◽  
...  

Deep-and-narrow micro-grooves are the common functional structures of miniature parts. The fabrication of the micromilled grooves with high quality and accuracy is the essential guarantee of the causative performance for these miniature parts, and micromilling is the most versatile process to machine such micro-grooves. However, micromilling technology is a highly tool-dependent process, and the commercial carbide micromilling cutter has shown obvious deficiencies in terms of rapid tool wear and inferior machined quality during the machining process. In this paper, a polycrystalline diamond (PCD) micromilling cutter with a large-aspect-ratio (LAR) was designed and prepared by the self-proposed hybrid fabrication method of laser and precision grinding. Micromilling experiments on oxygen-free copper were conducted, and the carbide micromilling cutter was selected in the comparative experiments. The variations of milling forces and specific energy were analyzed through the parameter experiments. Then, the surface quality, machined accuracy and tool wear were further investigated. Results showed that the PCD micromilling cutter with an aspect ratio of 3.25 was successfully manufactured by the proposed hybrid method. The self-fabricated PCD micromilling cutter presented remarkable superiority in terms of the surface quality, machined accuracy, and tool wear when preparing deep-and-narrow micro-grooves. Finally, a satisfactory micromilled groove with an aspect ratio of 2.5 was achieved with the self-fabricated LAR PCD cutter under the optimized conditions.

2021 ◽  
Author(s):  
Yujiang Lu ◽  
Tao Chen

Abstract Titanium alloy materials, with excellent chemical and physical properties, are widely applied to the manufacture of key components in the aerospace industry. Nevertheless, its hard-to-machine characteristic causes various problems in the machining process, such as severe tool wear, difficulty to ensure good surface quality, etc. To achieve high efficiency and quality of machining titanium alloy materials, this paper conducted an experimental research on the high-speed milling of TC11 titanium alloy with self-propelled rotary milling cutters. In the work, the wear mechanism of self-propelled rotary milling cutters was explored, the influence of milling velocity was analyzed on the cutting process, and the variation laws were obtained of milling forces, chip morphology and machined surface quality with the milling length. The results showed that in the early and middle stages of milling, the insert coating peeled off evenly under the joint action of abrasive and adhesive wear mechanisms. As the milling length increased, the dense notches occurred on the cutting edge of the cutter, the wear mechanism converted gradually into fatigue wear, and furthermore coating started peeling off the cutting edge with the occurrence of thermal fatigue cracks on the insert. As the milling length was further extended, the milling forces tended to intensify, the chip deformation worsened, and the obvious cracks occurred at the bottom of chips. Moreover, the rise in milling velocity reduced the tool wear resistance, increased obviously the milling forces and the surface roughness.


Author(s):  
Tao Chen ◽  
Weijie Gao ◽  
Guangyue Wang ◽  
Xianli Liu

Torus cutters are increasingly used in machining high-hardness materials because of high processing efficiency. However, due to the large hardness variation in assembled hardened steel workpiece, the tool wear occurs easily in machining process. This severely affects the machined surface quality. Here, we conduct a research on the tool wear and the machined surface quality in milling assembled hardened steel mold with a torus cutter. The experimental results show the abrasive wear mechanism dominates the initial tool wear stage of the torus cutter. As the tool wear intensifies, the adhesive wear gradually occurs due to the effect of alternating stress and impact load. Thus, the mixing effect of the abrasive and adhesive wears further accelerates tool wear, resulting in occurrence of obvious crater wear band on the rake face and coating tearing area on the flank face. Finally, the cutter is damaged by the fatigue wear mechanism, reducing seriously the cutting performance. With increase of flank wear, moreover, there are increasingly obvious differences in both the surface morphology and the cutting force at the two sides of the joint seam of the assembled hardened steel parts, including larger height difference at the two sides of the joint seam and sudden change of cutting force, as a result, leading to decreasing cutting stability and deteriorating seriously machined surface quality.


Author(s):  
Yinfei Yang ◽  
Jinjin Han ◽  
Xiuqing Hao ◽  
Liang Li ◽  
Ning He

High aspect ratio micro-grooves are critical structures in the micro-electromechanical system. However, problems like rapid tool wear, low processing efficiency, and inferior machined quality in micro-milling of high aspect ratio micro-grooves by length–diameter ratio tools are particularly significant. In this work, a combined micro-milling method based on water-free alcohol as the cutting fluid and laser deburring is proposed to investigate the high aspect ratio micro-groove generation of oxygen-free high-conductivity copper TU1. Parametric experiments and high aspect ratio micro-groove experiments were conducted to investigate the surface quality, cutting forces, and tool wear. The water-free alcohol was employed to improve the tool life and machined surface quality. In the case of the oxygen-free high-conductivity copper TU1 material, a satisfactory high aspect ratio micro-groove (groove-width = 0.2 μm and aspect ratio = 2.5) with a nanoscale surface roughness ( Ra = 68 nm) was obtained under the preferred machining conditions. Furthermore, the deburring process of the high aspect ratio micro-groove by the laser technology was conducted to achieve ideal machined quality of the top surfaces.


2013 ◽  
Vol 554-557 ◽  
pp. 2093-2100 ◽  
Author(s):  
Domenico Umbrello

Machining of advancedaerospace materials have grown in the recent years although the hard-to-machinecharacteristics of alloys like titanium or nickel based alloys cause highercutting forces, rapid tool wear, and more heat generation. This paper presentsan experimental evaluation of machining ofInconel718alloy under dry conditions at varying of cutting speeds and feed rates.The influence of the cutting conditions on surface integrity was studied interms of surface roughness, affected layer, grain size variations and phasechanges/modification. Also, the machining process performance was evaluatedthrough the power consumption and tool-wear.


2010 ◽  
Vol 164 ◽  
pp. 171-176 ◽  
Author(s):  
Tomáš Březina ◽  
Jan Vetiška ◽  
Petr Blecha ◽  
Pavel Houška

The oscillations occurring between the tool and the machined area during the turning process lead to degradation of the machined surface, cause poor geometric accuracy, accelerate tool wear and generate noise. This paper deals with the possibility of elimination of these self-excited oscillations by changing the parameters of the turning process. On the basis of the regenerative principle of self-excited oscillation generation, a computer model of the machining process was developed. Furthermore, a PID controller was proposed to control the compensation of the vibrations and its suitability for elimination of the self-excited oscillations was verified experimentally.


2021 ◽  
Author(s):  
Zhonghang Yuan ◽  
Bin Fang ◽  
Yude Dong ◽  
Heng Ding ◽  
Yuanbin Zhang

Abstract Micromilling (MM) is favored by the field of high-precision micro parts. However, the high plasticity of Inconel718 often poses a threat to MM, such as pits, humps and gullies, which affect the surface quality. In this study, the influence of ultrasonic vibration assisted micromilling (UVAMM) on surface quality is comprehensively analyzed by using the machining process of workpiece vibration, combined with cutting force, tool wear, surface morphology and corrosion resistance. The results show that, on the one hand, small amplitude plays a significant role in reducing cutting force and inhibiting tool wear. On the other hand, smaller speed, smaller feed rate and moderate amplitude will produce better surface morphology, which is a uniform and regular fish scale surface with lower surface roughness and fewer surface defects. Furthermore, the application of ultrasonic vibration also significantly improves the surface corrosion resistance of Inconel718. It is worth noting that the surface corrosion resistance does not completely depend on the surface roughness, but also has a close correlation with the surface morphology.


Author(s):  
Vijayathithan Mathiyazhagan ◽  
Anil Meena

Abstract The usage of CFRP and Ti stacks in the aerospace industry has widely increased due to its mechanical properties and improved structural functions but at the same time, different mechanical and thermal properties of the CFRP and Ti makes the process difficult. Major apprehensions in the drilling of CFRP/Ti stacks include rapid tool wear and poor hole quality. Typically, the surface quality of the holes in the drilling of CFRP/Ti stack is poor due to delamination, the progression of hole diameter in CFRP and burr formation in Ti. Moreover, the flank wear on the tool also influences the surface quality of the hole produced. Therefore, the present study is mainly focused on the influence of cutting parameters on cutting forces, hole quality and tool wear characteristics. Drilling was performed on CFRP/Ti stack using coated and uncoated carbide tools. The obtained results revealed a significant correlation between tool wear and delamination characteristics.


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
H. Safari ◽  
S. Izman

Surface quality is one of the most critical restraints for determining cutting parameters and selecting of machining process in metal cutting process. In this study, the effects of cutting parameters and tool wear on the surface and sub-surface quality of high speed dry end milling Ti-6Al-4V were investigated. PVD Coated carbide tools were used under different high cutting speeds and feed rates. The quality of the machined surface and corresponding alteration on the sub-surface and entry/exit edges were characterized through scanning electron microscopy. The results showed that the better surface quality was obtained when machining at higher cutting speeds and feed rates. High speed dry end milling using the worn tool causes to plastic deformation of the alloy which is resulted in developing the lamellae on the surface and causing poor surface finish. Worn tools with the uniform tool wear land generated better surface quality compare to those with chipping and flaking on the tool edge surface. Tool wear is suggested as the other contributing factor in developing entry and exit edge damages. The results of sub-surface alteration measurement revealed that the worn tool enhanced the sub-surface alteration resulted in 45% increase in plastic deformation compare to the new tool.


2020 ◽  
Vol 7 ◽  
pp. 27
Author(s):  
Sisira Kanta Pattnaik ◽  
Minaketan Behera ◽  
Sachidananda Padhi ◽  
Pusparaj Dash ◽  
Saroj Kumar Sarangi

Enormous developmental work has been made in synthesis of metastable diamond by hot filament chemical vapor deposition (HFCVD) method. In this paper, micro-crystalline diamond (MCD) was deposited on WC–6 wt.% Co cutting tool inserts by HFCVD technique. The MCD coated tool was characterized by the scanning electron microscope (SEM), X-ray diffraction (XRD) and micro Raman spectroscopy (μ-RS). A comparison was made among the MCD tool, uncoated tungsten carbide (WC) tool and polycrystalline diamond (PCD) tool during the dry turning of rolled aluminum. The various major tests were conducted such as surface roughness, cutting force and tool wear, which were taken into consideration to establish a proper comparison among the advanced cutting tools. Surface roughness was measured during machining by Talysurf. The tool wear was studied by SEM after machining. The cutting forces were measured by Kistler 3D-dynamometer during the machining process. The test results indicate that, the CVD coated MCD tool and PCD tool produced almost similar results. But, the price of PCD tools are five times costlier than MCD tools. So, MCD tool would be a better alternative for machining of aluminium.


Author(s):  
Rakesh Kumar Gunda ◽  
Suresh Kumar Reddy Narala

In any machining operation, a major division of energy is converted into heat which creates detrimental effects on tool wear, tool life and surface quality of machined work material. Effective cooling/lubrication in the machining zone is essential to improve friction and temperatures by efficient heat dissipation which increases tool life and surface quality. But adverse health effects caused by use of flood cooling are drawing manufacturers’ attention to develop methods for controlling occupational exposure to cutting fluids. In demanding the improvement of productivity and product quality of machining, use of solid lubricant thin film was suggested as one of the necessary alternative machining techniques to apply lubricants effectively to the high-temperature zone. There is a general concern in the machining process in terms of applying lubricants effectively to the machining zone. Therefore, this research work contributes to the development of a novel approach to apply lubricants effectively to the rake face and flank face of the cutting tool without polluting the environment. Electrostatic high-velocity solid lubricant assisted machining is a novel technique used in the machining process with a very low flow rate (1–20 mL/h) to enhance the process performance of turning difficult-to-cut materials. The performance of electrostatic high-velocity solid lubricant technique is studied in comparison to minimum quantity solid lubricant, minimum quantity lubricant and dry and wet (flood cooling) to assess the performance considering surface roughness, cutting force and tool wear as performance indices. The experimental results revealed that electrostatic high-velocity solid lubricant with MoS2 solid lubricant at low volume and constant flow rate has observed high potential to apply lubricants effectively in the machining zone when compared with the considered environmental conditions. This work is expected to form a scientific basis toward developing electrostatic high-velocity solid lubricant technique for reducing the manufacturing impact in the machining of aerospace components such as Ti–6Al–4V alloy in terms of both machinability and environmental perspectives.


Sign in / Sign up

Export Citation Format

Share Document