scholarly journals PDMS Microfabrication and Design for Microfluidics and Sustainable Energy Application: Review

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1350
Author(s):  
Lin Lin ◽  
Chen-Kuei Chung

The polydimethylsiloxane (PDMS) is popular for wide application in various fields of microfluidics, microneedles, biology, medicine, chemistry, optics, electronics, architecture, and emerging sustainable energy due to the intrinsic non-toxic, transparent, flexible, stretchable, biocompatible, hydrophobic, insulating, and negative triboelectric properties that meet different requirements. For example, the flexibility, biocompatibility, non-toxicity, good stability, and high transparency make PDMS a good candidate for the material selection of microfluidics, microneedles, biomedical, and chemistry microchips as well as for optical examination and wearable electronics. However, the hydrophobic surface and post-surface-treatment hydrophobic recovery impede the development of self-driven capillary microchips. How to develop a long-term hydrophilicity treatment for PDMS is crucial for capillary-driven microfluidics-based application. The dual-tone PDMS-to-PDMS casting for concave-and-convex microstructure without stiction is important for simplifying the process integration. The emerging triboelectric nanogenerator (TENG) uses the transparent flexible PDMS as the high negative triboelectric material to make friction with metals or other positive-triboelectric material for harvesting sustainably mechanical energy. The morphology of PDMS is related to TENG performance. This review will address the above issues in terms of PDMS microfabrication and design for the efficient micromixer, microreactor, capillary pump, microneedles, and TENG for more practical applications in the future.

2017 ◽  
Vol 5 (7) ◽  
pp. 1810-1815 ◽  
Author(s):  
Arunkumar Chandrasekhar ◽  
Nagamalleswara Rao Alluri ◽  
Balasubramaniam Saravanakumar ◽  
Sophia Selvarajan ◽  
Sang-Jae Kim

Scavenging of ambient dissipated mechanical energy addresses the limitations of conventional batteries by providing an auxiliary voltaic power source, and thus has significant potential for self-powered and wearable electronics.


2020 ◽  
Vol 15 ◽  
pp. 155892502096735
Author(s):  
Li Niu ◽  
Xuhong Miao ◽  
Gaoming Jiang ◽  
Ailan Wan ◽  
Yutian Li ◽  
...  

Advanced triboelectric nanogenerator techniques provide a massive opportunity for the development of new generation wearable electronics, which toward multi-function and self-powering. Textiles have been refreshed with the requirement of flexible electronics in recent decades. In particular, knitted-textiles have exhibited enormous and prominent potential possibilities for smart wearable devices, which are based on the merits of high stretchability, excellent elasticity, comfortability as well as compatibility. Combined knitted textiles with nanogenerator techniques will promote the knitted textile triboelectric nanogenerators (KNGs) emerging, endowing conventional textiles with biomechanical energy harvesting and sensing energy supplied abilities. However, the design of KNGs and the construction of KNGs are based on features of human motions symbolizing considerable challenges in both high efficiency and excellent comfort. Currently, this review is concerned with KNGs construction account of triboelectric effects referring to knitted-textile classifications, structural features, human motion energy traits, working mechanisms, and practical applications. Moreover, the remaining challenges of industrial production and the future prospects of knitted-textile triboelectric nanogenerators of harvesting biomechanical energy are presented.


2019 ◽  
Vol 14 (11) ◽  
pp. 1572-1581 ◽  
Author(s):  
Shamsuddin ◽  
Saeed Ahmed Khan ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Palwasha Jalalzai

A self-powered mechanical energy harvesting system consists of the storage system and the energy scavenging TENG. Triboelectric nanogenerator includes a system which integrates a self-powered sensor and the power generator, this triboelectric nanogenerator has the potential to be used in a modern wearable electronic TENG. It has been reported that triboelectric nanogenerator working under complicated deformation like bending, stretching and twisting brings the main problem. Here we have fabricated the shape adaptive Triboelectric nanogenerator which solves all the deformation issues and can harvest the mechanical energy through human body motion in any deformation, the fabricated TENG is a self-powered sensor which can sense the different human activities and can monitor the health issues, the TENG stores the energy directly to the capacitor for powering the wearable electronics. A human skin based triboelectric nanogenerator was designed from the silicon rubber and the copper acetate-II used as the electrode, which makes the TENG flexible self-powered sensor, it can be stretched up to 200%. The stretchable nature and the flexibility of the human skin based silicon rubber triboelectric nanogenerator makes it the promising flexible and shape-adaptive energy harvesting TENG. The fabricated TENG generated the open circuit voltage 70 V and the short circuit current 11 μA and delivered the power 55 μW at the load of 80 MΩ. 42 LEDs were powered directly from the TENG. The fabricated TENG has human skin tactile property which does not harm the human skin while using it multiple times. The layer of copper acetate is completely coated with silicone rubber. The fabricated TENG is flexible, biocompatible and cost effective.


2020 ◽  
Vol 8 (48) ◽  
pp. 25995-26003
Author(s):  
Kequan Xia ◽  
Di Wu ◽  
Jiangming Fu ◽  
Nur Amin Hoque ◽  
Ying Ye ◽  
...  

This study provides a novel wearable TENG based on nickel–copper bimetallic hydroxide nanowrinkles (NC-TENG) to harvest the mechanical energy from human motion.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1126
Author(s):  
Inkyum Kim ◽  
Tae Young Ahn ◽  
Daewon Kim

With advances in internet of things technology and fossil fuel depletion, energy harvesting has emerged rapidly as a means of supplying small electronics with electricity. As a method of enhancing the electrical output of the triboelectric nanogenerator, specialized for harvesting mechanical energy, structural modification to amplify the input force is receiving attention due to the limited input energy level. In this research, a lever structure was employed for delivering the amplified input force to a triboelectric nanogenerator. With structural optimization of a 2.5 cm:5 cm distance ratio of the first and second parts using two lever structures, the highest electrical outputs were achieved: a VOC of 51.03 V, current density of 3.34 mA m−2, and power density of 73.5 mW m−2 at 12 MΩ in the second part. As applications of this triboelectric generator, a vertical vibration sensor and a wearable reloading trigger in a gun shooting game were demonstrated. The possibility for a wearable finger bending sensor with low-level input was checked using a minimized device. Enhanced low-detection limit with amplified input force from the structural advantage of this lever-based triboelectric nanogenerator device can expand its applicability to the mechanical trigger for wearable electronics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2711
Author(s):  
Tingting Zhang ◽  
Lingjie Xie ◽  
Junyan Li ◽  
Zheguan Huang ◽  
Hao Lei ◽  
...  

The components in traditional human–machine interaction (HMI) systems are relatively independent, distributed and low-integrated, and the wearing experience is poor when the system adopts wearable electronics for intelligent control. The continuous and stable operation of every part always poses challenges for energy supply. In this work, a triboelectric technology-based all-in-one self-powered HMI system for wireless remote telemetry and the control of intelligent cars is proposed. The dual-network crosslinking hydrogel was synthesized and wrapped with functional layers to fabricate a stretchable fibrous triboelectric nanogenerator (SF-TENG) and a supercapacitor (SF-SC), respectively. A self-charging power unit containing woven SF-TENGs, SF-SCs, and a power management circuit was exploited to harvest mechanical energy from the human body and provided power for the whole system. A smart glove designed with five SF-TENGs on the dorsum of five fingers acts as a gesture sensor to generate signal permutations. The signals were processed by the microcontroller and then wirelessly transmitted to the intelligent car for remote telemetry and control. This work is of paramount potential for the application of various terminal devices in self-powered HMI systems with high integration for wearable electronics.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yongjiu Zou ◽  
Alberto Libanori ◽  
Jing Xu ◽  
Ardo Nashalian ◽  
Jun Chen

The parallel evolution of wearable electronics, artificial intelligence, and fifth-generation wireless technology has created a technological paradigm with the potential to change our lives profoundly. Despite this, addressing limitations linked to continuous, sustainable, and pervasive powering of wearable electronics remains a bottleneck to overcome in order to maximize the exponential benefit that these technologies can bring once synergized. A recent groundbreaking discovery has demonstrated that by using the coupling effect of contact electrification and electrostatic induction, triboelectric nanogenerators (TENGs) can efficiently convert irregular and low-frequency passive biomechanical energy from body movements into electrical energy, providing an infinite and sustainable power source for wearable electronics. A number of human motions have been exploited to properly and efficiently harness this energy potential, including human ambulation. Shoes are an indispensable component of daily wearing and can be leveraged as an excellent platform to exploit such kinetic energy. In this article, the latest representative achievements of TENG-based smart electricity-generating shoes are comprehensively reviewed. We summarize ways in which not only can biomechanical energy be scavenged via ambulatory motion, but also biomonitoring of health parameters via tracking of rhythm and strength of pace can be implemented to aid in theranostic fields. This work provides a systematical review of the rational structural design, practical applications, scenario analysis, and performance evaluation of TENG-based smart shoes for wearable electricity generation. In addition, the perspective for future development of smart electricity-generation shoes as a sustainable and pervasive energy solution towards the upcoming era of the Internet of Things is discussed.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Lingjie Xie ◽  
Ningning Zhai ◽  
Yina Liu ◽  
Zhen Wen ◽  
Xuhui Sun

Energy collection ways using solar energy, wave, wind, or mechanical energy have attracted widespread attention for small self-powered electronic devices with low power consumption, such as sensors, wearable devices, electronic skin, and implantable devices. Among them, triboelectric nanogenerator (TENG) operated by coupling effect of triboelectrification and electrostatic induction has gradually gained prominence due to its advantages such as low cost, lightweight, high degree of freedom in material selection, large power, and high applicability. The device with a single energy exchange mechanism is limited by its conversion efficiency and work environment and cannot achieve the maximum conversion of energy. Thus, this article reviews the research status of different types of hybrid generators based on TENG in recent years. Hybrid energy generators will improve the output performance though the integration of different energy exchange methods, which have an excellent application prospect. From the perspective of energy complementation, it can be divided into harvesting mechanical energy by various principles, combining with harvesters of other clean energy, and converting mechanical energy or various energy sources into hydrogen energy. For integrating multitype energy harvesters, mechanism of single device and structural design of integrated units for different application scenarios are summarized. The expanding energy harvesting efficiency of the hybrid TENG makes the scheme of self-charging unit to power intelligent mobile electronic feasible and has practical significance for the development of self-powered sensor network.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Md Al Mahadi Hasan ◽  
Yuanhao Wang ◽  
Chris R. Bowen ◽  
Ya Yang

AbstractThe development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.


Sign in / Sign up

Export Citation Format

Share Document