scholarly journals Optimization of Manufacturing Parameters of 3D Printed Solid Microneedles for Transdermal Drug Delivery

2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Kenan Muhamedagić ◽  
Amina Tucak ◽  
Merima Sirbubalo ◽  
Ognjenka Rahić ◽  
Lamija Hindija ◽  
...  

Microneedles (MNs) have been manufactured using a variety of methods from a range of materials, but most of them are expensive and time-consuming for screening new designs and making any modifications. Therefore, stereolithography (SLA) has emerged as a promising approach for MN fabrication due to its numerous advantages, including simplicity, low cost, and the ability to manufacture complex geometrical products at any time, including modifications to the original designs. This work aimed to print MNs using SLA technology and investigate the effects of post-printing curing conditions on the mechanical properties of 3D-printed MNs. Solid MNs were designed using CAD software and printed with grey resin (Formlabs, UK) using a Form 3 printer (Formlabs, UK). MNs dimensions were 1.2 × 0.4 × 0.05 mm, arranged in 6 rows and 6 columns on a 10 × 10 mm baseplate. MNs were then immersed in an isopropyl alcohol bath to remove unpolymerized resin residues and cured in a UV-A heated chamber (Formlabs, UK). In total, nine samples were taken for each combination of curing temperature (35, 50, and 70 °C) and curing time (5, 20, and 60 min). Fracture tests were conducted using a hardness apparatus TB24 (Erweka, Germany). MNs were placed on the moving probe of the machine and compressed until fracture. The optimization of the SLA process parameters for improving the strength of MNs was performed using the Taguchi method. The design of experiments was carried out based on the Taguchi L9 orthogonal array. Experimental results showed that the curing temperature has a significant influence on MN strength improvements. Improvement of the MN strength can be achieved by increasing the curing temperature and curing time.

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 470 ◽  
Author(s):  
K. Kallol ◽  
M. Motalab ◽  
M. Parvej ◽  
P. Konari ◽  
H. Barghouthi ◽  
...  

The goal of the study is to understand how the curing characteristics of a human bone cement (HBC) and veterinary bone cement (VBC) influence the mechanical behavior of each cement and cement bonding with an implant. This study hypothesizes that the curing temperature and time influence the mechanical properties of the cement adjacent to the implant, which resulted in the variability in bonding strength between the implant and cement. To test this hypothesis, this study measured the exothermic temperature, flexural strength, hardness, and morphology of a HBC and VBC at different curing times. In addition, this study measured shear strength at the interfaces of implant/HBC and implant/VBC samples during static and stepwise cyclic tests at different curing times. This study used Stryker Simplex P and BioMedtrix 3 poly methyl methacrylate (PMMA) as an HBC and VBC, respectively. This study cured HBC and VBC cement for 30 and 60 min and then conducted flexural, hardness, and interface fracture tests to evaluate the curing effect on mechanical behavior of each of the cements. This study found that the curing time significantly increases the values of flexure and hardness properties of each cement and shear strength of implant/HBC and implant/VBC (p < 0.05). This study observed a difference of curing time and temperature between HBC and VBC. This study also observed a significant difference of surface porosity at the interface of implant/HBC and implant/VBC interfaces. The variability of mechanical properties between HBC and VBC due to the differences of curing conditions may influence the bonding of cement with the implant.


2000 ◽  
Author(s):  
Guoli Liu ◽  
Jianmin Qu ◽  
Laurence J. Jacobs

Abstract The objective of this paper is to characterize the cure state of polymer adhesive joints using nonlinear ultrasonic techniques. To this end, through transmission tests were carried out on joint samples that had been subjected to various curing conditions. In these tests, a 40-cycle harmonic signal was generated by a 2MHz narrow-band PZT transducer as the incident wave. The wave transmitted through the adhesive joint was received with a 4MHz narrow-band PZT transducer. The magnitude of the second order harmonics in the transmitted signal was measured and the corresponding nonlinear parameter β was calculated. A fairly good correlation was observed between the nonlinear parameter and the cure state. It was found that under-curing (lower curing temperature or short curing time) tends to increase the nonlinear parameter.


2020 ◽  
Vol 26 (8) ◽  
pp. 1337-1344 ◽  
Author(s):  
Prashant Jindal ◽  
Mamta Juneja ◽  
Divya Bajaj ◽  
Francesco Luke Siena ◽  
Philip Breedon

Purpose 3D printing techniques have been widely used for manufacturing complex parts for various dental applications. For achieving suitable mechanical strength, post-cure processing is necessary, where the relative time duration and temperature specification also needs to be defined. The purpose of this study/paper is to assess the effects of post curing conditions and mechanical properties of 3D printed clear dental aligners Design/methodology/approach Dental long-term clear resin material has been used for 3D printing of dental aligners using a Formlabs 3D printer for direct usage on patients. Post-curing conditions have been varied, all of which have been subjected to mechanical compression loading of 1,000 N to evaluate the curing effects on the mechanical strength of the aligners. Findings The experimental studies provide significant insight into both temperatures and time durations that could provide sufficient compressive mechanical strength to the 3D printed clear dental aligners. It was observed that uncured aligners deformed plastically with large deformations under the loading conditions, whereas aligners cured between 400°C–800°C for 15–20 min deformed elastically before fragmenting into pieces after safely sustaining higher compressive loads between 495 N and 666 N. The compressive modulus ratio for cured aligners ranged between 4.46 and 5.90 as compared to uncured aligners. For shorter cure time durations and lower temperature conditions, an appropriate elevated compressive strength was also achieved. Originality/value Based on initial assessments by dental surgeons, suitable customised clear aligners can be designed, printed and cured to the desired levels based on patient’s requirements. This could result in time, energy and unit production cost savings, which ultimately would help to alleviate the financial burden placed on both the health service and their patients.


2012 ◽  
Vol 626 ◽  
pp. 931-936 ◽  
Author(s):  
Liew Yun Ming ◽  
Kamarudin Hussin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Mohammed Binhussain ◽  
Luqman Musa ◽  
...  

The properties of metakaolin geopolymer paste are affected by the alkali concentration, the initial raw materials, solidification process, and amount of mixing water as well as the curing conditions. This study aimed to investigate the effect of curing temperature (room temperature, 40°C, 60°C, 80°C and 100°C) and curing time (6h, 12h, 24h, 48h and 72h) on the geopolymer pastes produced from geopolymer powder. The results showed that curing at room temperature was unfeasible. Heat was required for the geopolymerization process, where strength increased as the curing temperature was increased. Moderate elevated curing temperature favored the strength development of geopolymer pastes in comparison with those treated with extreme elevated curing temperature. When geopolymer paste was subjected to extreme elevated curing temperature, shorter curing time should be used to avoid deterioration in strength gain. Similarly, longer curing time was recommended for moderate elevated curing temperature. The microstructure of geopolymer paste cured at moderate curing temperature showed obvious densification of structure. In contrast, the structure formed was weak and less compact at very high elevated curing temperature.


2014 ◽  
Vol 548-549 ◽  
pp. 247-253
Author(s):  
Zhi Gang Zhu ◽  
Bei Xing Li ◽  
Jin Cheng Liu ◽  
Xing Dong Lv

To produce 130MPa reactive powder concrete with iron tailing sands as aggregation in an economic hot curing system, the effects of curing temperature, curing time and curing conditions on the reactive powder concrete was studied, the reasons of the strength of reactive powder concrete in different curing systems has the difference from the submicroscopic structure point of view was analyzed. The results show that use 90°C hot water to cure reactive powder concrete for 48h can lead it’s 28 day compressive strength reaches 140MPa, the flexural strength reaches 28MPa.


2013 ◽  
Vol 438-439 ◽  
pp. 197-201
Author(s):  
Xian Hua Yao ◽  
Peng Li ◽  
Jun Feng Guan

Based on the generalization and analysis of laboratory experimental results on mix ratio, the effects of various factors such as cement content, water-cement ratio, curing time, curing conditions and types of cement on the mechanical properties of unconfined compressive strength of cement soil are presented. Results show that the unconfined compressive strength of cement soil increases with the growing curing time, and it is greatly affected by the cement content, water-cement ratio, cement types and curing time, while the effect of curing conditions is weak with a cement content of more than 10%. Moreover, the stress-strain of the cement soil responds with the cement content and curing time, increasing curing time and cement content makes the cement soil to be harder and brittle, and leads to a larger Young's modulus.


2017 ◽  
Vol 744 ◽  
pp. 45-54
Author(s):  
Yong Min Yang ◽  
Zhao Heng Li ◽  
Tong Sheng Zhang ◽  
Qi Jun Yu

Previous studies showed that curing regime has a significant influence on mechanical properties of light-burned magnesium oxide (MgO) concrete. However, research has been limited mostly to constant-temperature studies, whereas dams manufactured from concrete exist in variable-temperature environments. In order to achieve material performance parameters that agree more closely with engineering practice, the development of mechanical properties of light-burned MgO concrete curing at constant temperature and simulated dam body temperature was studied. The compressive strength, elastic modulus and ultimate tensile strain of light-burned MgO concrete increased with the increase of curing temperature, MgO content and curing age. These constant-temperature properties were similar to those under simulated dam body temperature curing conditions. A comparison of experimental results of simulated dam body temperature curing and constant temperature curing showed that a thermostatic curing system was suitable for calculating the laws of mechanics development for dam concrete.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1250 ◽  
Author(s):  
Robert E. Przekop ◽  
Maciej Kujawa ◽  
Wojciech Pawlak ◽  
Marta Dobrosielska ◽  
Bogna Sztorch ◽  
...  

With the development of 3D printing technology, there is a need to produce printable materials with improved properties, e.g., sliding properties. In this paper, the authors present the possibilities of producing composites based on biodegradable PLA with the addition of graphite. The team created composites with the following graphite weight contents: 1%, 2.5%, 5%, 7.5%, and 10%. Neat material was also subjected to testing. Tribological, mechanical, and chemical properties of the mentioned materials were examined. Measurements were also made after keeping the samples in ageing and climatic ovens. Furthermore, SEM observations of samples before and after friction tests were carried out. It was demonstrated that increasing graphite content caused a significant decrease in wear (PLA + 10% graphite had a wear rate three times lower than for a neat material). The addition of graphite did not adversely affect most of the other properties, but it ought to be noted that mechanical properties changed significantly. After conditioning in a climatic oven PLA + 10% graphite has (in comparison with neat material) 11% lower fracture stress, 47% lower impact strength, and 21% higher Young’s modulus. It can be certainly stated that the addition of graphite to PLA is a step towards obtaining a material that is low-cost and suitable for printing sliding spare parts.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2762
Author(s):  
Dohyun Kim ◽  
Ji-Suk Shim ◽  
Dasun Lee ◽  
Seung-Ho Shin ◽  
Na-Eun Nam ◽  
...  

Three-dimensional (3D) printing is increasingly being utilized in the dental field. After fabricating a prosthesis using a 3D printed resin, a post-curing process is required to improve its mechanical properties, but there has been insufficient research on the optimal post-curing conditions. We used various 3D printed crown and bridge materials in this study, and evaluated the changes in their properties according to post-curing time by evaluating the flexural strength, Weibull modulus, Vickers hardness, color change, degree of conversion, and biocompatibility. The obtained results confirmed that the strength of the 3D printed resin increased when it was post-cured for 60–90 min. The Vickers hardness, the degree of conversion, and biocompatibility of the 3D printed resins increased significantly around the beginning of the post-curing time, and then increased more gradually as the post-curing time increased further. It was observed that the color tone also changed as the post-curing time increased, with some groups showing a ΔE00 value of ≥ 2.25, which can be recognized clinically. This study has confirmed that, after the printing process of a 3D printed resin was completed, a sufficient post-curing time of at least 60 min is required to improve the overall clinical performance of the produced material.


Sign in / Sign up

Export Citation Format

Share Document