scholarly journals Novel Feather Degrading Keratinases from Bacillus cereus Group: Biochemical, Genetic and Bioinformatics Analysis

2022 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Arwa Ali Almahasheer ◽  
Amal Mahmoud ◽  
Hesham El-Komy ◽  
Amany I. Alqosaibi ◽  
Sultan Aktar ◽  
...  

In this study, five keratinolytic bacteria were isolated from poultry farm waste of Eastern Province, Saudi Arabia. The highest keratinase activity was obtained at 40–45 °C, pH 8–9, feather concentration 0.5–1%, and using white chicken feather as keratin substrate for 72 h. Enhancement of keratinase activity through physical mutagen UV radiation and/or chemical mutagen ethyl methanesulfonate (EMS) resulted in five mutants with 1.51–3.73-fold increased activity over the wild type. When compared with the wild type, scanning electron microscopy validated the mutants’ effectiveness in feather degradation. Bacterial isolates are classified as members of the S8 family peptidase Bacillus cereus group based on sequence analysis of the 16S rRNA and keratinase genes. Interestingly, keratinase KerS gene shared 95.5–100% identity to keratinase, thermitase alkaline serine protease, and thermophilic serine protease of the B. cereus group. D137N substitution was observed in the keratinase KerS gene of the mutant strain S13 (KerS13uv+ems), and also seven substitution variations in KerS26 and KerS26uv of strain S26 and its mutant S26uv. Functional analysis revealed that the subtilisin-like serine protease domain containing the Asp/His/Ser catalytic triad of KerS gene was not affected by the predicted substitutions. Prediction of physicochemical properties of KerS gene showed instability index between 17.5–19.3 and aliphatic index between 74.7–75.7, which imply keratinase stability and significant thermostability. The docking studies revealed the impact of substitutions on the superimposed structure and an increase in binding of mutant D137N of KerS13uv+ems (affinity: −7.17; S score: −6.54 kcal/mol) and seven mutants of KerS26uv (affinity: −7.43; S score: −7.17 kcal/mol) compared to the wild predicted structure (affinity: −6.57; S score: −6.68 kcal/mol). Together, the keratinolytic activity, similarity to thermostable keratinases, and binding affinity suggest that keratinases KerS13uv+ems and KerS26uv could be used for feather processing in the industry.

2020 ◽  
Vol 5 (4) ◽  
pp. 179
Author(s):  
Brenda Bevilaqua Daroz ◽  
Luis Guilherme Virgílio Fernandes ◽  
Aline Florencio Teixeira ◽  
Ana Lucia Tabet Oller Nascimento

Leptospirosis is a zoonosis caused by the pathogenic bacteria of the genus Leptospira. The identification of conserved outer membrane proteins among pathogenic strains is a major research target in elucidating mechanisms of pathogenicity. Surface-exposed proteins are most probably the ones involved in the interaction of leptospires with the environment. Some spirochetes use outer membrane proteases as a way to penetrate host tissues. HtrA is a family of proteins found in various cell types, from prokaryotes to primates. They are a set of proteases usually composed of a serine protease and PDZ domains, and they are generally transported to the periplasm. Here, we identified four genes—annotated as HtrA, LIC11111, LIC20143, LIC20144 and LIC11037—and another one annotated as a serine protease, LIC11112. It is believed that the last forms a functional heterodimer with LIC11111, since they are organized in one operon. Our analyses showed that these proteins are highly conserved among pathogenic strains. LIC11112, LIC20143, and LIC11037 have the serine protease domain with the conserved catalytic triad His-Asp-Ser. This is the first bioinformatics analysis of HtrA proteins from Leptospira that suggests their proteolytic activity potential. Experimental studies are warranted to elucidate this possibility.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 698
Author(s):  
Klèma Marcel Koné ◽  
Pauline Hinnekens ◽  
Jelena Jovanovic ◽  
Andreja Rajkovic ◽  
Jacques Mahillon

The thermotolerant representative of the Bacillus cereus group, Bacillus cytotoxicus, reliably harbors the coding gene of cytotoxin K-1 (CytK-1). This protein is a highly cytotoxic variant of CytK toxin, initially recovered from a diarrheal foodborne outbreak that caused the death of three people. In recent years, the cytotoxicity of B. cytotoxicus has become controversial, with some strains displaying a high cytotoxicity while others show no cytotoxicity towards cell lines. In order to better circumscribe the potential pathogenic role of CytK-1, knockout (KO) mutants were constructed in two B. cytotoxicus strains, E8.1 and E28.3. The complementation of the cytK-1 KO mutation was implemented in a mutant strain lacking in the cytK-1 gene. Using the tetrazolium salt (MTT) method, cytotoxicity tests of the cytK-1 KO and complemented mutants, as well as those of their wild-type strains, were carried out on Caco-2 cells. The results showed that cytK-1 KO mutants were significantly less cytotoxic than the parental wild-type strains. However, the complemented mutant was as cytotoxic as the wild-type, suggesting that CytK-1 is the major cytotoxicity factor in B. cytotoxicus.


2009 ◽  
Vol 29 (6) ◽  
pp. 385-395 ◽  
Author(s):  
Mingying Liu ◽  
Shicui Zhang

Plg (plasminogen), a member of the serine protease superfamily, is a key component constituting the fibrinolytic system, and its evolutionary origin remains unknown during the course of animal evolution. In the present study, we isolated a cDNA, designated BbPlgl, encoding a kringle-containing protease with plasminogen-like activity from the basal chordate Branchiostoma belcheri. The deduced protein, BbPlgl, consisted of 430 amino acids, which is structurally characterized by the presence of an N-terminal signal peptide of 16 amino acids, 2 kringle domains with a Lys-binding site structure, a serine protease domain with the putative tPA (tissue plasminogen activator)-cleavage site (between Arg297 and Val298), the catalytic triad His237-Asp288-Ser379 expected for protease function, and a potential N-linked glycosylation site, all characteristic of Plgs. Besides, the recombinant refolded BbPlgl was readily activated by human uPA (urokinase plasminogen activator), and exhibited Plg-like activity. BbPlgl was also able to auto-activate at neutral and alkaline pH at 4°C without the addition of uPA, and the activation was accelerated by addition of human uPA. These results demonstrate that BbPlgl is a novel member of the Plg family, with a domain structure of K-K-SP (kringle-kringle-serine protease) lacking the PAN domain, pushing the evolutionary origin of Plg to the protochordate. In addition, BbPlgl displays a tissue-specific expression pattern in B. belcheri, with the most abundant expression in the hepatic caecum and hind-gut, agreeing with the notion that the hepatic caecum of amphioxus is the precursor of the vertebrate liver.


2018 ◽  
Vol 85 (0) ◽  
Author(s):  
Jamile de Oliveira Hachiya ◽  
Gabriel Augusto Marques Rossi ◽  
Higor Oliveira Silva ◽  
Rafael Akira Sato ◽  
Ana Maria Centola Vidal ◽  
...  

ABSTRACT: This study aimed to evaluate the occurrence of Bacillus cereus group in requeijões and especialidades lácteas tipo requeijão (regular and light) and to verify if there is differences in relation to this occurrence among different categories of these products. A set of 14 (35%) lots was contaminated with this bacterial group from the 40 lots with low counts (maximum 3.1 × 10 CFU/g), and no significant difference regarding counts or presence/absence were observed among the categories of the products. It can be concluded that contamination by B. cereus group in these products is unable to consist in risk to consumers, regarding adequate refrigeration during selling. This study was the first one to report this bacteria group for these dairy products and highlights the needs of further investigations to evaluate the impact of its spoilage during shelf life.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 439-439
Author(s):  
Viola J.F. Strijbis ◽  
Ka Lei Cheung ◽  
Tessa A. Rutten ◽  
Pieter H. Reitsma ◽  
Daniel Verhoef ◽  
...  

Abstract Chymotrypsin-like serine proteases are hallmarked by a protease domain comprising the catalytic triad residues His57, Asp102, and Ser195 (chymotrypsinogen numbering) situated in the active site cleft. While the catalytic triad in conjunction with the oxyanion hole residues regulate substrate cleavage, the active site subpockets (S1-4) control substrate recognition and binding. The high structural homology of the serine protease domains allows for analogous strategies in drug design, which is underscored by the direct oral anticoagulants (DOACs) for the prophylactic management of stroke in atrial fibrillation and prevention and treatment of venous thrombosis. DOACs inhibit coagulation serine proteases by reversibly engaging the active site with high affinity. To expand the repertoire of DOAC-specific reversal agents we have previously successfully modified the S4 active site subpocket of human factor Xa to prevent DOAC binding while preserving catalytic activity [Verhoef 2017 Nature Commun.]. To explore whether an analogous strategy can be applied to create DOAC resistance in the serine protease thrombin, specific substitutions or sequences in or around the dabigatran-binding S4 subsite derived from naturally occurring serine proteases or plasma proteins were introduced in prothrombin. A panel of prothrombin variants was generated and transfected into HEK293 cells to allow for stable protein expression. In some of the generated prothrombin variants comprising insertions in amino acid sequence 91-99 that is directly adjacent to the S4 subsite protein expression was severely impaired. This indicates that exchange of any surface-exposed serine protease or plasma protein region into the prothrombin protease domain is not necessarily compatible with protein expression. In contrast, exchange of the human prothrombin 91-99 sequence for that of human kallikrein 3 or targeted amino acid replacement of S4 subsite residue Ile174 resulted in prothrombin protein expression levels similar to wild-type prothrombin. Following expression, prothrombin variants were purified to homogeneity using the CaptureSelect tm affinity matrix that selects for fully gamma-carboxylated prothrombin. The specific prothrombin clotting activity analyses of the purified prothrombin variants KL3 (0.7 ± 0.2 U/mg), I174A (0.8 ± 0.2 U/mg), and I174F (0.8 ± 0.3 U/mg) demonstrated an overall ~10-fold reduced specific activity relative to wild-type prothrombin (7.5 ± 0.1 U/mg). As such, modification of the S4 subsite likely interferes with the binding and subsequent conversion of fibrinogen by thrombin. To determine whether the prothrombin variants supported tissue factor-initiated thrombin formation in human plasma, prothrombin-deficient plasma was supplemented with increasing plasma concentrations of prothrombin variant (90-180 ug/mL). Consistent with their reduced specific clotting activity, 180 ug/mL prothrombin variant was required to obtain substantial thrombin generation but with reduced thrombin generation parameters (peak thrombin, ETP) relative to supplementation with plasma concentrations of wild-type prothrombin (90 ug/mL). This calibrated automated thrombin generation assay set-up was used to assess the DOAC-resistance of the prothrombin variants. While thrombin formation reached half-maximum inhibition at 532 ± 58 nM dabigatran in wild-type prothrombin-supplemented plasma, addition of the prothrombin variants displayed a ~2-fold reduced sensitivity to dabigatran inhibition (IC50: 1186 ± 136 nM prothrombin-KL3; 851 ± 97 nM prothrombin-I174F; 772 ± 80 nM prothrombin-I174A). This demonstrates that the S4 subsite-modified prothrombin variants are able to support thrombin generation in the presence of physiological plasma concentrations of inhibitor. Collectively, our findings indicate that human prothrombin variants comprising a single point mutation at position Ile174 in the S4 subsite or at a region directly adjacent to the S4 subsite are able to generate thrombin in plasma inhibited by dabigatran. Hence, serine proteases with S4 subpocket modifications have the potential to bypass DOAC therapy and could provide a generic strategy in the development of novel DOAC-bypassing agents. Figure 1 Figure 1. Disclosures Reitsma: VarmX. B.V.: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company, Patents & Royalties. Verhoef: VarmX. B.V.: Current Employment, Current holder of individual stocks in a privately-held company. Bos: VarmX B.V.: Research Funding; uniQure Biopharma B.V.: Research Funding.


Author(s):  
Arbind Kumar ◽  
Pradeep Kumar Anand ◽  
Saahil Chandel ◽  
Anju Shrivatava ◽  
Jagdeep Kaur

Background:: Multi drug-resistant tuberculosis is a major health threat to humans. Whole genome sequencing of several isoniazid (INH) resistant strains of M. tuberculosis revealed mutations in several genes. Rv1592c was demonstrated as lipolytic enzyme and its expression was up-regulated during isoniazid (INH) treatment. The valine at position 430 of Rv1592c was mutated to alanine frequently in the INH resistant strain of M. tuberculosis. Methods: In this report, an array of computational approaches was used to understand the role of Val430-Ala mutation in Rv1592c in INH resistance. The impact of mutations on structural stability and degree of INH modification was demonstrated using the molecular dynamics method. The mutation in the Rv1592c gene at V430 position was created by the PCR primer walking method. Mutant and wild type gene was cloned into E. coli-mycobacteria shuttle vector (pVV-16) and expressed in Mycobacterium smegmatis system. The isoniazid susceptibility assay was performed by agar plate culture spot and CFUs count assay. Results: This study demonstrated that the Val430 in Rv1592c makes the part of flap covering the substrate binding cavity. Mutation at Val430-Ala in Rv1592c caused the displacement of the flap region, resulting in uncovering a cavity, which allows accessibility of substrate to the active site cleft. The Val430-Ala mutation in Rv1592c created its structure energetically more stable. RMSD, RMSF and Rg simulation of mutant maintained overall stability throughout the simulation period while the native protein displayed comparatively more fluctuations. Moreover, docking studies showed that INH was bound into the active pocket of the mutant with considerable binding energy (−6.3 kcal/mol). In order to observe constant binding for INH, complexes were simulated for 50 ns. It was observed that after simulation, INH remained bound in the pocket with an increased molecular bonding network with the neighbor amino acid residues. In vitro studies clearly suggested that M. smegmatis expressing mutant has a better survival rate in isoniazid treatment as compared to wild type. Conclusion: Overall, this study at the outset suggested that the mutation observed in drug resistant strain provides stability to the Rv1592c protein and increased affinity towards the INH due to flap displacement, leading to the possibility for its modification. In vitro results supported our in silico findings.


2018 ◽  
Vol 315 (6) ◽  
pp. L1042-L1057 ◽  
Author(s):  
Michael C. Yee ◽  
Heddie L. Nichols ◽  
Danny Polley ◽  
Mahmoud Saifeddine ◽  
Kasturi Pal ◽  
...  

Alternaria alternata is a fungal allergen associated with severe asthma and asthma exacerbations. Similarly to other asthma-associated allergens, Alternaria secretes a serine-like trypsin protease(s) that is thought to act through the G protein-coupled receptor protease-activated receptor-2 (PAR2) to induce asthma symptoms. However, specific mechanisms underlying Alternaria-induced PAR2 activation and signaling remain ill-defined. We sought to determine whether Alternaria-induced PAR2 signaling contributed to asthma symptoms via a PAR2/β-arrestin signaling axis, identify the protease activity responsible for PAR2 signaling, and determine whether protease activity was sufficient for Alternaria-induced asthma symptoms in animal models. We initially used in vitro models to demonstrate Alternaria-induced PAR2/β-arrestin-2 signaling. Alternaria filtrates were then used to sensitize and challenge wild-type, PAR2−/− and β-arrestin-2−/− mice in vivo. Intranasal administration of Alternaria filtrate resulted in a protease-dependent increase of airway inflammation and mucin production in wild-type but not PAR2−/− or β-arrestin-2−/− mice. Protease was isolated from Alternaria preparations, and select in vitro and in vivo experiments were repeated to evaluate sufficiency of the isolated Alternaria protease to induce asthma phenotype. Administration of a single isolated serine protease from Alternaria, Alternaria alkaline serine protease (AASP), was sufficient to fully activate PAR2 signaling and induce β-arrestin-2−/−-dependent eosinophil and lymphocyte recruitment in vivo. In conclusion, Alternaria filtrates induce airway inflammation and mucus hyperplasia largely via AASP using the PAR2/β-arrestin signaling axis. Thus, β-arrestin-biased PAR2 antagonists represent novel therapeutic targets for treating aeroallergen-induced asthma.


2015 ◽  
Vol 223 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Christina Leibrock ◽  
Michael Hierlmeier ◽  
Undine E. Lang ◽  
Florian Lang

Abstract. The present study explored the impact of Akt1 and Akt3 on behavior. Akt1 (akt1-/-) and Akt3 (akt3-/-) knockout mice were compared to wild type (wt) mice. The akt1-/- mice, akt3-/- mice, and wt mice were similar in most parameters of the open-field test. However, the distance traveled in the center area was slightly but significantly less in akt3-/- mice than in wt mice. In the light/dark transition test akt1-/- mice had significantly lower values than wt mice and akt3-/- mice for distance traveled, number of rearings, rearing time in the light area, as well as time spent and distance traveled in the entrance area. They were significantly different from akt3-/- mice in the distance traveled, visits, number of rearings, rearing time in the light area, as well as time spent, distance traveled, number of rearings, and rearing time in the entrance area. In the O-maze the time spent, and the visits to open arms, as well as the number of protected and unprotected headdips were significantly less in akt1-/- mice than in wt mice, whereas the time spent in closed arms was significantly more in akt1-/- mice than in wt mice. Protected and unprotected headdips were significantly less in akt3-/- mice than in wt mice. In closed area, akt3-/- mice traveled a significantly larger distance at larger average speed than akt1-/- mice. No differences were observed between akt1-/- mice, akt3-/- mice and wt-type mice in the time of floating during the forced swimming test. In conclusion, akt1-/- mice and less so akt3-/ mice display subtle changes in behavior.


1992 ◽  
Vol 67 (01) ◽  
pp. 095-100 ◽  
Author(s):  
Paul J Declerck ◽  
Leen Van Keer ◽  
Maria Verstreken ◽  
Désiré Collen

SummaryAn enzyme-linked immunosorbent assay (ELISA) for quantitation of natural and recombinant plasminogen activators containing the serine protease domain (B-chain) of urokinase-type plasminogen activator (u-PA) was developed, based on two murine monoclonal antibodies, MA-4D1E8 and MA-2L3, raised against u-PA and reacting with non-overlapping epitopes in the B-chain. MA-4D1E8 was coated on microtiter plates and bound antigen was quantitated with MA-2L3 conjugated with horseradish peroxidase. The intra-assay, inter-assay and inter-dilution coefficients of variation of the assay were 6%, 15% and 9%, respectively. Using recombinant single-chain u-PA (rscu-PA) as a standard, the u-PA-related antigen level in normal human plasma was 1.4 ± 0.6 ng/ml (mean ± SD, n = 27).The ELISA recognized the following compounds with comparable sensitivity: intact scu-PA (amino acids, AA, 1 to 411), scu-PA-32k (AA 144 to 411), a truncated (thrombin-derived) scu-PA comprising A A 157 to 411, and chimeric t-PA/u-PA molecules including t-PA(AA1-263)/scu-PA(AA144-411), t-PA(AA1-274)/scu-PA(AA138-411) and t-PA(AA87-274)/scu-PA(AA138-411). Conversion of single-chain to two-chain forms of u-PA or inhibition of active two-chain forms with plasminogen activator inhibitor-1 or with the active site serine inhibitor phenyl-methyl-sulfonyl fluoride, did not alter the reactivity in the assay. In contrast, inactivation with α2-antiplasmin or with the active site histidine inhibitor Glu-Gly-Arg-CH2Cl resulted in a 3- to 5-fold reduction of the reactivity. When purified scu-PA-32k was added to pooled normal human plasma at final concentrations ranging from 20 to 1,000 ng/ml, recoveries in the ELISA were between 84 and 110%.The assay was successfully applied for the quantitation of pharmacological levels of scu-PA and t-PA(AA87_274)/scu-PA(AA138-411) in plasma during experimental thrombolysis in baboons.Thus the present ELISA, which is specifically dependent on the presence of the serine protease part of u-PA, is useful for measurement of a wide variety of variants and chimeras of u-PA which are presently being developed for improved thrombolytic therapy.


Author(s):  
Suman Rohilla ◽  
Ranju Bansal ◽  
Puneet Chauhan ◽  
Sonja Kachler ◽  
Karl-Norbert Klotz

Background: Adenosine receptors (AR) have emerged as competent and innovative nondopaminergic targets for the development of potential drug candidates and thus constitute an effective and safer treatment approach for Parkinson’s disease (PD). Xanthine derivatives are considered as potential candidates for the treatment Parkinson’s disease due to their potent A2A AR antagonistic properties. Objective: The objectives of the work are to study the impact of substituting N7-position of 8-m/pchloropropoxyphenylxanthine structure on in vitro binding affinity of compounds with various AR subtypes, in vivo antiparkinsonian activity and binding modes of newly synthesized xanthines with A2A AR in molecular docking studies. Methods: Several new 7-substituted 8-m/p-chloropropoxyphenylxanthine analogues have been prepared. Adenosine receptor binding assays were performed to study the binding interactions with various subtypes and perphenazine induced rat catatonia model was used for antiparkinsonian activity. Molecular docking studies were performed using Schrödinger molecular modeling interface. Results: 8-para-substituted xanthine 9b bearing an N7-propyl substituent displayed the highest affinity towards A2A AR (Ki = 0.75 µM) with moderate selectivity versus other AR subtypes. 7-Propargyl analogue 9d produced significantly longlasting antiparkinsonian effects and also produced potent and selective binding affinity towards A2A AR. In silico docking studies further highlighted the crucial structural components required to develop xanthine derived potential A2A AR ligands as antiparkinsonian agents. Conclusion: A new series of 7-substituted 8-m/p-chloropropoxyphenylxanthines having good affinity for A2A AR and potent antiparkinsonian activity has been developed.


Sign in / Sign up

Export Citation Format

Share Document