scholarly journals Quantification and Multidrug Resistance Profiles of Vancomycin-Resistant Enterococci Isolated from Two Wastewater Treatment Plants in the Same Municipality

2019 ◽  
Vol 7 (12) ◽  
pp. 626 ◽  
Author(s):  
Haley Sanderson ◽  
Rodrigo Ortega-Polo ◽  
Kevin McDermott ◽  
Geoffrey Hall ◽  
Rahat Zaheer ◽  
...  

Wastewater treatment plants (WWTPs) are points of control for the environmental dissemination of antimicrobial resistant bacteria. Vancomycin-resistant enterococci (VRE) were used as indicators of antimicrobial resistance (AMR) in two WWTPs (biologically aerated filter (BAF) and conventional activated sludge (CAS)) in the same municipality. The removal and abundance of enterococci and VRE as well as the species and antimicrobial resistance profiles of VRE were assessed. Enterococci and VRE from the primary and final effluents were enumerated. Results were assessed from an ecological context. VRE was not selected for by either WWTP but the BAF system outperformed the CAS system for the removal of enterococci/VRE. Enterococcus faecalis (n = 151), E. faecium (n = 94) and E. casseliflavus/E. gallinarum (n = 59) were the dominant VRE species isolated. A decrease in levofloxacin resistance in enterococci was observed in the BAF WWTP. An increase in nitrofurantoin resistant (p < 0.001) and a decrease in quinupristin/dalfopristin (p = 0.003) and streptomycin (p = 0.022) resistant enterococci were observed in the CAS WWTP, corresponding to a shift of VRE from E. faecalis to E. faecium. Wastewater treatment processes can be managed to limit the dissemination of antimicrobial resistance determinants into the surrounding environment.

2012 ◽  
Vol 65 (7) ◽  
pp. 1179-1189 ◽  
Author(s):  
S. Martin Ruel ◽  
J.-M. Choubert ◽  
H. Budzinski ◽  
C. Miège ◽  
M. Esperanza ◽  
...  

The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range. During the present work more than 100 substances were analysed through on-site mass balances over 19 municipal wastewater treatment lines. The most relevant substances according to their occurrence in raw wastewater, in treated wastewater and in sludge were identified, and their fate in wastewater treatment processes was assessed. About half of priority substances of WFD were found at concentrations higher than 0.1 μg/L in wastewater. For 26 substances, potential non-compliance with Environmental Quality Standard of Water Framework Directive has been identified in treated wastewater, depending on river flow. Main concerns are for Cd, DEHP, diuron, alkylphenols, and chloroform. Emerging substances of particular concern are by-products, organic chemicals (e.g. triclosan, benzothiazole) and pharmaceuticals (e.g. ketoprofen, diclofenac, sulfamethoxazole, carbamazepine). About 80% of the load of micropollutants was removed by conventional activated sludge plants, but about two-thirds of removed substances were mainly transferred to sludge.


2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


2019 ◽  
Author(s):  
Haley Sanderson ◽  
Rodrigo Ortega-Polo ◽  
Rahat Zaheer ◽  
Noriko Goji ◽  
Kingsley K. Amoako ◽  
...  

Abstract Background Wastewater treatment plants (WWTPs) are considered hotspots for the environmental dissemination of antimicrobial resistance (AMR) determinants. Vancomycin-Resistant Enterococcus (VRE) are candidates for gauging the degree of AMR bacteria in wastewater. E. faecalis and E. faecium are recognized indicators of fecal contamination in water. Genome comparisons of enterococci isolated from a conventional activated sludge (CAS) and biological aerated filter (BAF) WWTPs were conducted. Results VRE isolates, including E. faecalis (n=24), E. faecium (n=11), E. casseliflavus (n=2) and E. gallinarum (n=2), were selected for sequencing based on source, species and AMR phenotype. The pangenomes of E. faecium and E. faecalis were both open. The genomic fraction related to mobilome had a positive correlation with genome size in E. faecium (p < 0.001) and E. faecalis (p < 0.001) and with the number of AMR genes in E. faecium (p = 0.005). The AMR phenotype generally aligned with genotype. Genes conferring vancomycin resistance, including vanA and vanM (E. faecium), vanG (E. faecalis), and vanC (E. casseliflavus/E. gallinarum), were detected in 20 genomes. The most prominent groups of functional AMR genes were efflux pumps and transporters. A minimum of 16, 6, 5 and 3 virulence genes were detected in E. faecium, E. faecalis, E. casseliflavus and E. gallinarum genomes, respectively. Virulence genes were more common in E. faecalis and E. faecium, than E. casseliflavus and E. gallinarum. A number of mobile genetic elements were shared among species. Functional CRISPR/Cas arrays were detected in 13 E. faecalis genomes, with all but one also containing a prophage. The lack of a functional CRISPR/Cas arrays was associated with multi-drug resistance in E. faecium. Phylogenetic analysis demonstrated differential clustering of isolates based on source but not based on WWTP. Genes related to phage and CRISPR/Cas arrays could potentially serve as environmental biomarkers. Conclusions There was no discernable difference between enterococcal genomes from the CAS and BAF WWTPs either before or after treatment. Understanding the impact of WWTPs on the dissemination of AMR in the environment will require knowledge of the mobility and upregulation of genes and the characterization of mobilomes within WWTPs and surrounding environments.


2010 ◽  
Vol 50 (6) ◽  
pp. 605-609 ◽  
Author(s):  
Carlos Araújo ◽  
Carmen Torres ◽  
Nuno Silva ◽  
Catarina Carneiro ◽  
Alexandre Gonçalves ◽  
...  

2014 ◽  
Vol 466-467 ◽  
pp. 404-411 ◽  
Author(s):  
Rachel E. Rosenberg Goldstein ◽  
Shirley A. Micallef ◽  
Shawn G. Gibbs ◽  
Ashish George ◽  
Emma Claye ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1403
Author(s):  
Kristýna Hricová ◽  
Magdaléna Röderová ◽  
Petr Fryčák ◽  
Volodymyr Pauk ◽  
Ondřej Kurka ◽  
...  

Due to the extensive use of antimicrobial agents in human and veterinary medicine, residues of various antimicrobials get into wastewater and, subsequently, surface water. On the one hand, a combination of processes in wastewater treatment plants aims to eliminate chemical and biological pollutants; on the other hand, this environment may create conditions suitable for the horizontal transfer of resistance genes and potential selection of antibiotic-resistant bacteria. Wastewater and surface water samples (Morava River) were analyzed to determine the concentrations of 10 antibiotics and identify those exceeding so-called predicted no-effect environmental concentrations (PNECs). This study revealed that residues of five of the tested antimicrobials, namely ampicillin, clindamycin, tetracycline, tigecycline and vancomycin, in wastewater samples exceeded the PNEC. Vancomycin concentrations were analyzed with respect to the detected strains of vancomycin-resistant enterococci (VRE), in which the presence of resistance genes, virulence factors and potential relationship were analyzed. VRE were detected in 16 wastewater samples (11%) and two surface water samples (6%). The PNEC of vancomycin was exceed in 16% of the samples. Since the detected VRE did not correlate with the vancomycin concentrations, no direct relationship was confirmed between the residues of this antimicrobials and the presence of the resistant strains.


Author(s):  
Gabriela Bairán ◽  
Georgette Rebollar-Pérez ◽  
Edith Chávez-Bravo ◽  
Eduardo Torres

Advances generated in medicine, science, and technology have contributed to a better quality of life in recent years; however, antimicrobial resistance has also benefited from these advances, creating various environmental and health problems. Several determinants may explain the problem of antimicrobial resistance, such as wastewater treatment plants that represent a powerful agent for the promotion of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG), and are an important factor in mitigating the problem. This article focuses on reviewing current technologies for ARB and ARG removal treatments, which include disinfection, constructed wetlands, advanced oxidation processes (AOP), anaerobic, aerobic, or combined treatments, and nanomaterial-based treatments. Some of these technologies are highly intensive, such as AOP; however, other technologies require long treatment times or high doses of oxidizing agents. From this review, it can be concluded that treatment technologies must be significantly enhanced before the environmental and heath problems associated with antimicrobial resistance can be effectively solved. In either case, it is necessary to achieve total removal of bacteria and genes to avoid the possibility of regrowth given by the favorable environmental conditions at treatment plant facilities.


2016 ◽  
Vol 82 (13) ◽  
pp. 3834-3845 ◽  
Author(s):  
Imen Ouardani ◽  
Syrine Turki ◽  
Mahjoub Aouni ◽  
Jesús L. Romalde

ABSTRACTHepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103genome copies [GC]/ml) and influents (2.7 × 103GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater.IMPORTANCEThis report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions in the communities, sewage facilities, the locality, and the climate. The wide dispersion of HAV in effluents proves the inefficacity of the current wastewater treatment processes used in Tunisia to remove virus; therefore, establishment of tertiary treatment processes or replacement of the medium-charge activated sludge (conventional activated sludge) by the low-charge version (oxidation ditch activated sludge) is absolutely needed. Rapid detection of the HAV genome in wastewater may provide a timely warning sign to health authorities to implement population protection measures.


2008 ◽  
Vol 57 (12) ◽  
pp. 1935-1944 ◽  
Author(s):  
S. Martin Ruel ◽  
J. M. Choubert ◽  
P. Ginestet ◽  
M. Coquery

The Water Framework Directive (WFD) has drawn attention to a series of metals and organic compounds because of their demonstrated or potential harmfulness for aquatic environments. The aim of our work was to build and to process a “practical” database focused on the role of wastewater treatment plants for the removal of the 37 priority compounds that have to be reduced or stopped by 2015, and of 34 additional relevant contaminants. About 11,000 concentration values in raw and treated wastewater and sludge, from more than 100 peer-reviewed articles and six French national screening programs, were integrated. A systematic approach showed the global low quality of data for most of the compounds, with missing information about the treatment process, sampling and analysis, leading to 10% of the data available for removal efficiency calculations. A semi-quantitative analysis allowed the identification of 20 priority and 10 additional relevant substances more frequently quantified at significant concentrations in raw wastewater and treated wastewater. Conventional activated sludge was able to remove more than 70% of half of the studied compounds, leaving only 10% of them with less than 50% removal. Physical–chemical treatments appeared to be about 30% less efficient than biological treatments. In addition, very few data are available concerning some compounds and some processes, especially sludge treatment and tertiary wastewater treatment processes. Therefore, complementary on-site measurements and modeling are required to propose adapted solutions for the treatment of priority and emerging substances in wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document