scholarly journals Response of Key Metabolites during a UV-A Exposure Time-Series in the Cyanobacterium Chlorogloeopsis fritschii PCC 6912

2021 ◽  
Vol 9 (5) ◽  
pp. 910
Author(s):  
Bethan Kultschar ◽  
Ed Dudley ◽  
Steve Wilson ◽  
Carole Anne Llewellyn

Ultraviolet A (UV-A) is the major component of UV radiation reaching the Earth’s surface, causing indirect damage to photosynthetic organisms via the production of reactive oxygen species (ROS). In comparison, UV-B causes both direct damage to biomolecules and indirect damage. UV-B is well studied in cyanobacterial research due to their long evolutionary history and adaptation to high levels of UV, with less work on the effects of UV-A. In this study, the response of key metabolites in Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR, 15 µmol·m−2·s−1) supplemented with UV-A (11 µmol·m−2·s−1) was investigated using gas chromatography- mass spectrometry (GC-MS). Results showed an overall significant increase in metabolite levels up to 24 h of UV-A exposure. Compared with previously reported UV-B (PAR + UV-B) and PAR only results, UV-A showed more similarity compared to PAR only exposure as opposed to supplemented UV-B. The amino acids glutamate, phenylalanine and leucine showed differences in levels between UV (both supplemented UV-A and supplemented UV-B) and PAR only (non-supplemented PAR), hinting to their relevance in UV stress response. The fatty acids, palmitic and stearic acid, showed positive log2 fold-change (FC) in supplemented UV-A and PAR only experiments but negative log2 FC in UV-B, indicating the more harmful effect of UV-B on primary metabolism. Less research has been conducted on UV-A exposure and cyanobacteria, a potential environmental stimuli for the optimisation of metabolites for industrial biotechnology. This study will add to the literature and knowledge on UV-A stress response at the metabolite level in cyanobacteria, especially within the less well-known species C. fritschii.

Metabolites ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 74 ◽  
Author(s):  
Bethan Kultschar ◽  
Ed Dudley ◽  
Steve Wilson ◽  
Carole A. Llewellyn

Cyanobacteria have many defence strategies to overcome harmful ultraviolet (UV) stress including the production of secondary metabolites. Metabolomics can be used to investigate this altered metabolism via targeted and untargeted techniques. In this study we assessed the changes in the intra- and extracellular low molecular weight metabolite levels of Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR) supplemented with UV-B (15 µmol m−2 s−1 of PAR plus 3 µmol m−2 s−1 of UV-B) and intracellular levels during 48 h of PAR only (15 µmol m−2 s−1) with sampling points at 0, 2, 6, 12, 24 and 48 h. Gas chromatography–mass spectrometry (GC–MS) was used as a metabolite profiling tool to investigate the global changes in metabolite levels. The UV-B time series experiment showed an overall significant reduction in intracellular metabolites involved with carbon and nitrogen metabolism such as the amino acids tyrosine and phenylalanine which have a role in secondary metabolite production. Significant accumulation of proline was observed with a potential role in stress mitigation as seen in other photosynthetic organisms. 12 commonly identified metabolites were measured in both UV-B exposed (PAR + UV-B) and PAR only experiments with differences in significance observed. Extracellular metabolites (PAR + UV-B) showed accumulation of sugars as seen in other cyanobacterial species as a stress response to UV-B. In conclusion, a snapshot of the metabolome of C. fritschii was measured. Little work has been undertaken on C. fritschii, a novel candidate for use in industrial biotechnology, with, to our knowledge, no previous literature on combined intra- and extracellular analysis during a UV-B treatment time-series. This study is important to build on experimental data already available for cyanobacteria and other photosynthetic organisms exposed to UV-B.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 170 ◽  
Author(s):  
Alla Silkina ◽  
Bethan Kultschar ◽  
Carole A. Llewellyn

Improving mass cultivation of cyanobacteria is a goal for industrial biotechnology. In this study, the mass cultivation of the thermophilic cyanobacterium Chlorogloeopsis fritschii was assessed for biomass production under light-emitting diode white light (LEDWL), far-red light (FRL), and combined white light and far-red light (WLFRL) adaptation. The induction of chl f was confirmed at 24 h after the transfer of culture from LEDWL to FRL. Using combined light (WLFRL), chl f, a, and d, maintained the same level of concentration in comparison to FRL conditions. However, phycocyanin and xanthophylls (echinone, caloxanthin, myxoxanthin, nostoxanthin) concentration increased 2.7–4.7 times compared to LEDWL conditions. The productivity of culture was double under WLFRL compared with LEDWL conditions. No significant changes in lipid, protein, and carbohydrate concentrations were found in the two different light conditions. The results are important for informing on optimum biomass cultivation of this species for biomass production and bioactive product development.


2020 ◽  
Author(s):  
Khongorzul Odgerel ◽  
Zsófia Bánfalvi

Abstract Background: Grafting experiments have shown that photoperiod-dependent induction of tuberisation in potato (Solanum tuberosum L.) is controlled by multiple overlapping signals, including mobile proteins, mRNAs, miRNAs and phytohormones. The interaction of vegetative organs and tubers at metabolite level, however, has not been studied in detail in potato.Results: Grafting experiments were carried out to unravel the influence of vegetative organs on the primary polar metabolite content of potato tubers and the effect of tuberisation on the metabolite content of leaves. Two potato cultivars, Hópehely (HP) and White Lady (WL), were homo- and hetero-grafted, and the effects of grafting were investigated in comparison to non-grafted controls. Non-targeted metabolite analysis using gas chromatography-mass spectrometry showed that the major difference between HP and WL tubers is in sucrose concentration. The sucrose level was higher in HP than in WL tubers and was not changed by grafting, suggesting that the sucrose concentration of tubers is genetically determined. The galactinol level was 8-fold higher in the WL leaves than in the HP leaves and, unlike the sucrose concentration of tubers, was altered by grafting. A positive correlation between the growth rate of the leaves and the time of tuber initiation was detected. The time of tuber initiation was delayed in the WL rootstocks by HP scions and shortened in the HP rootstocks by WL scions, supporting the previous finding that tuberisation is triggered by source-derived mobile signals.Conclusions: We identified the major polar metabolites in leaves and tubers of two commercial potato cultivars and tested the effect of grafting on the metabolite compositions in both organs. We found significant differences in metabolite concentrations of the two cultivars. The grafting did not change substantially the metabolite levels either in leaves or tubers with the exception of galactinol, the concentration of which was slightly influenced in leaves by rootstocks.


2020 ◽  
Vol 21 (3) ◽  
pp. 719 ◽  
Author(s):  
Roberta Esposito ◽  
Nadia Ruocco ◽  
Luisa Albarano ◽  
Adrianna Ianora ◽  
Loredana Manfra ◽  
...  

Oxylipins are diatom-derived secondary metabolites, deriving from the oxidation of polyunsatured fatty acids that are released from cell membranes after cell damage or senescence of these single-celled algae. Previous results revealed harmful toxic effects of polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) on sea urchin Paracentrotus lividus embryonic development by testing individual compounds and mixtures of the same chemical group. Here, we investigated the combined effects of these compounds on sea urchin development at the morphological and molecular level for the first time. Our results demonstrated that oxylipin mixtures had stronger effects on sea urchin embryos compared with individual compounds, confirming that PUAs induce malformations and HEPEs cause developmental delay. This harmful effect was also confirmed by molecular analysis. Twelve new genes, involved in stress response and embryonic developmental processes, were isolated from the sea urchin P. lividus; these genes were found to be functionally interconnected with 11 genes already identified as a stress response of P. lividus embryos to single oxylipins. The expression levels of most of the analyzed genes targeted by oxylipin mixtures were involved in stress, skeletogenesis, development/differentiation, and detoxification processes. This work has important ecological implications, considering that PUAs and HEPEs represent the most abundant oxylipins in bloom-forming diatoms, opening new perspectives in understanding the molecular pathways activated by sea urchins exposed to diatom oxylipins.


2012 ◽  
Vol 37 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Ryota Komori ◽  
Mai Taniguchi ◽  
Yoshiaki Ichikawa ◽  
Aya Uemura ◽  
Masaya Oku ◽  
...  

mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Mallory Choudoir ◽  
Sam Rossabi ◽  
Matthew Gebert ◽  
Detlev Helmig ◽  
Noah Fierer

ABSTRACTSoil microbes produce an immense diversity of metabolites, including volatile organic compounds (VOCs), which can shape the structure and function of microbial communities. VOCs mediate a multitude of microbe-microbe interactions, including antagonism. Despite their importance, the diversity and functional relevance of most microbial volatiles remain uncharacterized. We assembled a taxonomically diverse collection of 48Actinobacteriaisolated from soil and airborne dust and surveyed the VOCs produced by these strains on two different medium typesin vitrousing gas chromatography-mass spectrometry (GC-MS). We detected 126 distinct VOCs and structurally identified approximately 20% of these compounds, which were predominately C1to C5hetero-VOCs, including (oxygenated) alcohols, ketones, esters, and nitrogen- and sulfur-containing compounds. Each strain produced a unique VOC profile. While the most common VOCs were likely by-products of primary metabolism, most of the VOCs were strain specific. We observed a strong taxonomic and phylogenetic signal for VOC profiles, suggesting their role in finer-scale patterns of ecological diversity. Finally, we investigated the functional potential of these VOCs by assessing their effects on growth rates of both pathogenic and nonpathogenic pseudomonad strains. We identified sets of VOCs that correlated with growth inhibition and stimulation, information that may facilitate the development of microbial VOC-based pathogen control strategies.IMPORTANCESoil microbes produce a diverse array of natural products, including volatile organic compounds (VOCs). Volatile compounds are important molecules in soil habitats, where they mediate interactions between bacteria, fungi, insects, plants, and animals. We measured the VOCs produced by a broad diversity of soil- and dust-dwellingActinobacteria in vitro. We detected a total of 126 unique volatile compounds, and each strain produced a unique combination of VOCs. While some of the compounds were produced by many strains, most were strain specific. Importantly, VOC profiles were more similar between closely related strains, indicating that evolutionary and ecological processes generate predictable patterns of VOC production. Finally, we observed that actinobacterial VOCs had both stimulatory and inhibitory effects on the growth of bacteria that represent a plant-beneficial symbiont and a plant-pathogenic strain, information that may lead to the development of novel strategies for plant disease prevention.


Sign in / Sign up

Export Citation Format

Share Document