scholarly journals Reassessment of the Columnea latent viroid (CLVd) Taxonomic Classification

2021 ◽  
Vol 9 (6) ◽  
pp. 1117
Author(s):  
Parichate Tangkanchanapas ◽  
Annelies Haegeman ◽  
Monica Höfte ◽  
Kris De Jonghe

Columnea latent viroid (CLVd) is a member of the Pospiviroid family and its naked circular RNA genome typically forms native “rod-like” secondary structures. In this work, the CLVd taxonomy was reevaluated based on sequence similarity and phylogenetic analysis, as well as the evaluation of the symptom development and disease severity of four selected CLVd isolates in a range of host species. The phylogenetic analysis showed that all CLVd isolates were clustered into five distinct clades: (I) severe isolates originally found in tomato crops in Thailand, (II) ornamental isolates, (III) mild isolates originally found in tomato crops in Thailand, and two clades (IV and V) containing mild isolates originating mainly from tomato crops in European countries, with different virulence levels on several hosts. Our analysis demonstrated that some CLVd isolates have a sequence similarity of less than 90% within the species taxon, as well as distinct biological characteristics (symptom development and virulence), both of which are important ICTV criteria for viroid classification. For these reasons, we propose that CLVd should be re-classified into at least three main taxonomic lineages: a “CLVd-tomato Asian lineage” (I), a “CLVd-tomato European lineage” (IV) and a “CLVd-ornamental European lineage” (II), plus two minor lineages (III and V), fitting the ICTV criteria.

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Badreddine Sijilmassi ◽  
Abdelkarim Filali-Maltouf ◽  
Hassan Boulahyaoui ◽  
Aymane Kricha ◽  
Kenza Boubekri ◽  
...  

A total of 14 Rhizobium strains were isolated from lentil accessions grown at the ICARDA experimental research station at Marchouch in Morocco and used for molecular characterization and symbiotic efficiency assessment. Individual phylogenetic analysis using the 16S rRNA gene, house-keeping genes rpoB, recA, and gyrB, and symbiotic genes nodD and nodA along with Multilocus Sequence Analysis (MLSA) of the concatenated genes (16S rRNA-rpoB-recA-gyrB) was carried out for the identification and clustering of the isolates. The symbiotic efficiency of the strains was assessed on three Moroccan lentil cultivars (Bakria, Chakkouf, and Zaria) based on the number of nodules, plant height, plant dry weight, and total nitrogen content in leaves. The results showed that the individual phylogenetic analysis clustered all the strains into Rhizobium laguerreae and Rhizobium leguminosarum with sequence similarity ranging from 94 to 100%, except one strain which clustered with Mesorhizobium huakuii with sequence similarity of 100%. The MLSA of the concatenated genes and the related percentages of similarity clustered these strains into two groups of Rhizobium species, with one strain as a new genospecies when applying the threshold of 96%. For symbiotic efficiency, the Bakria variety showed the best association with 10 strains compared to its non-inoculated control (p-value ≤ 0.05), followed by Chakkouf and Zaria. The present study concluded that the genetic diversity and the symbiotic efficiency of Rhizobium strains appeared to be mainly under the control of the lentil genotypes.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Umaru Bangura ◽  
Jacob Buanie ◽  
Joyce Lamin ◽  
Christopher Davis ◽  
Gédéon Ngiala Bongo ◽  
...  

Lassa fever is a viral hemorrhagic fever caused by the Lassa virus LASV, which was first isolated in the rodent Mastomys natalensis in 1974 in Kenema, Sierra Leone. As little is known about the abundance and the presence of LASV in rodents living in the Bo area, we carried out a small mammal longitudinal population survey. A standardized trapping session was performed in various habitats and seasons in six villages over two years (2014–2016) and samples collected were tested for arenavirus IgG and LASV. A Bayesian phylogenetic analysis was performed on sequences identified by PCR. A total of 1490 small mammals were collected, and 16 rodent species were identified, with M. natalensis (355, 24%) found to be the most prevalent species. Forty-one (2.8%) samples were IgG positive, and 31 of these were trapped in homes and 10 in surrounding vegetation. Twenty-nine of 41 seropositive rodents were M. natalensis. We detected four LASV by PCR in two villages, all found in M. natalensis. Phylogenetic analysis showed that the sequences were distributed within the Sierra Leonean clade within lineage IV, distinguishing a Bo sub-clade older than a Kenema sub-clade. Compared to other settings, we found a low abundance of M. natalensis and a low circulation of LASV in rodents in villages around Bo district.


2021 ◽  
Author(s):  
Juliana D Siqueira ◽  
Livia R Goes ◽  
Brunna M Alves ◽  
Pedro S de Carvalho ◽  
Claudia Cicala ◽  
...  

Abstract Numerous factors have been identified to influence susceptibility to SARS-CoV-2 infection and disease severity. Cancer patients are more prone to clinically evolve to more severe COVID-19 conditions, but the determinants of such a more severe outcome remain largely unknown. We have determined the full-length SARS-CoV-2 genomic sequences of cancer patients and healthcare workers (non-cancer controls) by deep sequencing and investigated the within-host viral population of each infection, quantifying intrahost genetic diversity. Naso- and oropharyngeal SARS-CoV-2+ swabs from 57 cancer patients and 14 healthcare workers from the Brazilian National Cancer Institute were collected in April–May 2020. Complete genome amplification using ARTIC network V3 multiplex primers was performed followed by next-generation sequencing. Assemblies were conducted in Geneious R11, where consensus sequences were extracted and intrahost single nucleotide variants were identified. Maximum likelihood phylogenetic analysis was performed using PhyMLv.3.0 and lineages were classified using Pangolin and CoV-GLUE. Phylogenetic analysis showed that all but one strain belonged to clade B1.1. Four genetically linked mutations known as the globally dominant SARS-CoV-2 haplotype (C241T, C3037T, C14408T and A23403G) were found in the majority of consensus sequences. SNV signatures of previously characterized Brazilian genomes were also observed in most samples. Another 85 SNVs were found at a lower frequency (1.4-19.7%) among the consensus sequences. Cancer patients displayed a significantly higher intrahost viral genetic diversity compared to healthcare workers. This difference was independent of SARS-CoV-2 Ct values obtained at the diagnostic tests, which did not differ between the two groups. The most common nucleotide changes of intrahost SNVs in both groups were consistent with APOBEC and ADAR activities. Intrahost genetic diversity in cancer patients was not associated with disease severity, use of corticosteroids, or use of antivirals, characteristics that could influence viral diversity. Moreover, the presence of metastasis, either in general or specifically in the lung, was not associated with intrahost diversity among cancer patients. Cancer patients carried significantly higher numbers of minor variants compared to non-cancer counterparts. Further studies on SARS-CoV-2 diversity in especially vulnerable patients will shed light onto the understanding of the basis of COVID-19 different outcomes in humans.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1692
Author(s):  
Li Gu ◽  
Ting Su ◽  
Ming-Tai An ◽  
Guo-Xiong Hu

Oreocharis esquirolii, a member of Gesneriaceae, is known as Thamnocharis esquirolii, which has been regarded a synonym of the former. The species is endemic to Guizhou, southwestern China, and is evaluated as vulnerable (VU) under the International Union for Conservation of Nature (IUCN) criteria. Until now, the sequence and genome information of O. esquirolii remains unknown. In this study, we assembled and characterized the complete chloroplast (cp) genome of O. esquirolii using Illumina sequencing data for the first time. The total length of the cp genome was 154,069 bp with a typical quadripartite structure consisting of a pair of inverted repeats (IRs) of 25,392 bp separated by a large single copy region (LSC) of 85,156 bp and a small single copy region (SSC) of18,129 bp. The genome comprised 114 unique genes with 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Thirty-one repeat sequences and 74 simple sequence repeats (SSRs) were identified. Genome alignment across five plastid genomes of Gesneriaceae indicated a high sequence similarity. Four highly variable sites (rps16-trnQ, trnS-trnG, ndhF-rpl32, and ycf 1) were identified. Phylogenetic analysis indicated that O. esquirolii grouped together with O. mileensis, supporting resurrection of the name Oreocharis esquirolii from Thamnocharisesquirolii. The complete cp genome sequence will contribute to further studies in molecular identification, genetic diversity, and phylogeny.


2011 ◽  
Vol 61 (12) ◽  
pp. 2974-2978 ◽  
Author(s):  
Jinxing Zhu ◽  
Xiaoli Liu ◽  
Xiuzhu Dong

Two mesophilic methanogenic strains, designated TS-2T and GHT, were isolated from sediments of Tuosu lake and Gahai lake, respectively, in the Qaidam basin, Qinghai province, China. Cells of both isolates were rods (about 0.3–0.5×2–5 µm) with blunt rounded ends and Gram-staining-positive. Strain TS-2T was motile with one or two polar flagella and used only H2/CO2 for growth and methanogenesis. Strain GHT was non-motile, used both H2/CO2 and formate and displayed a variable cell arrangement depending on the substrate: long chains when growing in formate (50 mM) or under high pressure H2 and single cells under low pressure H2. Phylogenetic analysis based on 16S rRNA gene sequences placed the two isolates in the genus Methanobacterium. Strain TS-2T was most closely related to Methanobacterium alcaliphilum NBRC 105226T (96 % 16S rRNA gene sequence similarity). Phylogenetic analysis based on the alpha subunit of methyl-coenzyme M reductase also supported the affiliation of the two isolates with the genus Methanobacterium. DNA–DNA relatedness between the isolates and M. alcaliphilum DSM 3387T was 39–53 %. Hence we propose two novel species, Methanobacterium movens sp. nov. (type strain TS-2T = AS 1.5093T = JCM 15415T) and Methanobacterium flexile sp. nov. (type strain GHT = AS 1.5092T = JCM 15416T).


2021 ◽  
Author(s):  
Saowapha Surawut ◽  
Sorasak Nak-aim ◽  
Chutapa Kunsook ◽  
Laddawan Kamhaengkul ◽  
Pornpimon Kanjanavas ◽  
...  

Abstract Ascomycetes mushrooms are fungi that produce ascospores in asci and some with perithecia. Not only they have a role of decomposer in ecology but also produced some bioactive compound, anti-microbial activity, and cytotoxicity. This study aims to explore the diversity of ascomycetes mushroom species in para rubber plantations and to identify them by morphological and sequence analysis of the internal transcribed spacer (ITS) region. The results found ascomycetes mushroom consist of Trichoderma pezizoides (RP1, % identity 98.79, DQ835513.1), Daldinia eschscholtzii (RP2, % identity 100, MN310384.1), Cookeina sulcipes (RP3, % identity 98.44, KY094620.1), Cookeina garethjonesii (RP4, % identity 99.06, KY094622.1), Cookeina tricholoma (RP5, % identity 100, KY094619.1) and Xylaria terricola (RP6, % identity 88.42, MF577038.1). Most of the ascomycetes in this study have previously been described in Thailand except Xylaria terricola. Additionally, phylogenetic analysis of ascomycetes mushroom showed high genetic relatedness with reference strains. Therefore, the sequence similarity and phylogenetic analysis confirmed the identity of six ascomycetes mushroom species, and further study of bioactive compound from these mushrooms may be investigated for other applications.


Author(s):  
Sona. S Dev ◽  
P. Poornima ◽  
Akhil Venu

Eggplantor brinjal (Solanum melongena L.), is highly susceptible to various soil-borne diseases. The extensive use of chemical fungicides to combat these diseases can be minimized by identification of resistance gene analogs (RGAs) in wild species of cultivated plants.In the present study, degenerate PCR primers for the conserved regions ofnucleotide binding site-leucine rich repeat (NBS-LRR) were used to amplify RGAs from wild relatives of eggplant (Black nightshade (Solanum nigrum), Indian nightshade (Solanumviolaceum)and Solanu mincanum) which showed resistance to the bacterial wilt pathogen, Ralstonia solanacearumin the preliminary investigation. The amino acid sequence of the amplicons when compared to each other and to the amino acid sequences of known RGAs deposited in Gen Bank revealed significant sequence similarity. The phylogenetic analysis indicated that they belonged to the toll interleukin-1 receptors (TIR)-NBS-LRR type R-genes. Multiple sequence alignment with other known R genes showed significant homology with P-loop, Kinase 2 and GLPL domains of NBS-LRR class genes. There has been no report on R genes from these wild eggplants and hence the diversity analysis of these novel RGAs can lead to the identification of other novel R genes within the germplasm of different brinjal plants as well as other species of Solanum.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2997-3002 ◽  
Author(s):  
Neha Niharika ◽  
Swati Jindal ◽  
Jasvinder Kaur ◽  
Rup Lal

A bacterial strain, designated Dd16T, was isolated from a hexachlorocyclohexane (HCH) dumpsite at Lucknow, India. Cells of strain Dd16T were Gram-stain-negative, non-motile, rod-shaped and yellow-pigmented. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Sphingomonas in the family Sphingomonadaceae , as it showed highest sequence similarity to Sphingomonas asaccharolytica IFO 15499T (95.36 %), Sphingosinicella vermicomposti YC7378T (95.30), ‘Sphingomonas humi’ PB323 (95.20 %), Sphingomonas sanxanigenens NX02T (95.14 %) and Sphingomonas desiccabilis CP1DT (95.00 %). The major fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) C14 : 0 2-OH, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The polar lipid profile of strain Dd16T also corresponded to those reported for species of the genus Sphingomonas (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, and a sphingoglycolipid), again supporting its identification as a member of the genus Sphingomonas . The predominant respiratory quinone was ubiquinone Q10, and sym-homospermidine was the major polyamine observed. The total DNA G+C content of strain Dd16T was 65.8 mol%. The results obtained on the basis of phenotypic characteristics and phylogenetic analysis and after biochemical and physiological tests, clearly distinguished strain Dd16T from closely related members of the genus Sphingomonas . Thus, strain Dd16T represents a novel species of the genus Sphingomonas for which the name Sphingomonas indica sp. nov. is proposed. The type strain is Dd16T ( = DSM 25434T = CCM 7882T).


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 677-684 ◽  
Author(s):  
Krishna Ghimire ◽  
Kristina Petrović ◽  
Brian J. Kontz ◽  
Carl A. Bradley ◽  
Martin I. Chilvers ◽  
...  

One hundred fifty-two Diaporthe isolates were recovered from symptomatic soybean (Glycine max) stems sampled from the U.S. states of Iowa, Indiana, Kentucky, Michigan, and South Dakota. Using morphology and DNA sequencing, isolates were identified as D. aspalathi (8.6%), D. caulivora (24.3%), and D. longicolla (67.1%). Aggressiveness of five isolates each of the three pathogens was studied on cultivars Hawkeye (D. caulivora and D. longicolla) and Bragg (D. aspalathi) using toothpick, stem-wound, mycelium contact, and spore injection inoculation methods in the greenhouse. For D. aspalathi, methods significantly affected disease severity (P < 0.001) and pathogen recovery (P < 0.001). The relative treatment effects (RTE) of stem-wound and toothpick methods were significantly greater than for the other methods. For D. caulivora and D. longicolla, a significant isolate × method interaction affected disease severity (P < 0.05) and pathogen recovery (P < 0.001). Significant differences in RTEs were observed among D. caulivora and D. longicolla isolates only when the stem-wound and toothpick methods were used. Our study has determined that the stem-wound and toothpick methods are reliable to evaluate the three pathogens; however, the significant isolate × method interactions for D. caulivora and D. longicolla indicate that multiple isolates should also be considered for future pathogenicity studies.


Sign in / Sign up

Export Citation Format

Share Document