scholarly journals Proteomics Readjustment of the Yarrowia lipolytica Yeast in Response to Increased Temperature and Alkaline Stress

2021 ◽  
Vol 9 (12) ◽  
pp. 2619
Author(s):  
Varvara Y. Sekova ◽  
Leonid I. Kovalyov ◽  
Marina A. Kovalyova ◽  
Natalya N. Gessler ◽  
Maria A. Danilova ◽  
...  

Yeasts cope with a wide range of environmental challenges using different adaptive mechanisms. They can prosper at extreme ambient pH and high temperatures; however, their adaptation mechanisms have not been entirely investigated. Previously, we showed the pivotal role and flexibility of the sugar and lipid composition of Yarrowia lipolytica W 29 upon adaptation to unfavorable conditions. In this study, we showed that extreme pH provoked significant changes in the cell wall proteins expression, with an increase in both the chaperones of heat shock protein HSP60 and some other proteins with chaperone functions. The mitochondria activity changes inducing the VDAC and malate dehydrogenase played an essential role in the adaptation, as did the altered carbohydrate metabolism, promoting its shift towards the pyruvate formation rather than gluconeogenesis. The elevated temperature led to changes in the cell wall proteins and chaperones, the induced expression of the proteins involved in the cell structural organization, ribosomal proteins, and the enzymes of formaldehyde degradation. Moreover, the readjustment of the protein composition and amount under combined stress indicated the promotion of catabolic processes related to scavenging the damaged proteins and lipids. Under all of the stress conditions studied, the process of folding, stress resistance, redox adaptation, and oxidative phosphorylation were the dominant pathways. The combined chronic alkaline and heat stress (pH 9.0, 38 °C) led to cross-adaptation, which caused “switching” over the traditional metabolism to the adaptation to the most damaging stress factor, namely the increased temperature.

2011 ◽  
Vol 91 (3) ◽  
pp. 645-654 ◽  
Author(s):  
Evgeniya Y. Yuzbasheva ◽  
Tigran V. Yuzbashev ◽  
Ivan A. Laptev ◽  
Tatiana K. Konstantinova ◽  
Sergey P. Sineoky

OENO One ◽  
2013 ◽  
Vol 47 (2) ◽  
pp. 129
Author(s):  
Grégory Pasquier ◽  
Delphine Lapaillerie ◽  
Jean-William Dupuy ◽  
Anne-Marie Lomenech ◽  
Stéphane Claverol ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To better understand the protein composition of grape skin cell walls, we have developed a method to analyse the strongly bound cell wall proteins.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The protocol was developed with grape skins at full maturity. The critical steps of this protocol were : (i) the elimination of cellular aggregates, (ii) the elimination of soluble proteins, and (iii) the localization of the identified proteins within the cell wall. To verify whether these three conditions were met, the decrease in the quantity of cellular aggregates was followed by optical microscopy, the removal of soluble proteins was measured by chemical assay, and the presence of proteins located in cell walls was demonstrated by extensive bioinformatic analysis. The process made it possible to obtain a four-fold reduction in the amount of cellular aggregates, a reduction in the concentration of soluble proteins below the method detection limit, and a high proportion of proteins predicted to be secreted (79 %).</p><p style="text-align: justify;"><strong>Conclusion</strong>: The protocol described in this paper constitutes the first method to analyse proteins strongly bound to cell walls in grape skins. However, this method excludes the identification of labile proteins or proteins weakly bound to the cell wall.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This protocol can be used for studying the role that strongly bound cell wall proteins play in development and defense processes in grape skins.</p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christos Katsaros ◽  
Sophie Le Panse ◽  
Gillian Milne ◽  
Carl J. Carrano ◽  
Frithjof Christian Küpper

Abstract The objective of the present study is to examine the fine structure of vegetative cells of Laminaria digitata using both chemical fixation and cryofixation. Laminaria digitata was chosen due to its importance as a model organism in a wide range of biological studies, as a keystone species on rocky shores of the North Atlantic, its use of iodide as a unique inorganic antioxidant, and its significance as a raw material for the production of alginate. Details of the fine structural features of vegetative cells are described, with particular emphasis on the differences between the two methods used, i.e. conventional chemical fixation and freeze-fixation. The general structure of the cells was similar to that already described, with minor differences between the different cell types. An intense activity of the Golgi system was found associated with the thick external cell wall, with large dictyosomes from which numerous vesicles and cisternae are released. An interesting type of cisternae was found in the cryofixed material, which was not visible with the chemical fixation. These are elongated structures, in sections appearing tubule-like, close to the external cell wall or to young internal walls. An increased number of these structures was observed near the plasmodesmata of the pit fields. They are similar to the “flat cisternae” found associated with the forming cytokinetic diaphragm of brown algae. Their possible role is discussed. The new findings of this work underline the importance of such combined studies which reveal new data not known until now using the old conventional methods. The main conclusion of the present study is that cryofixation is the method of choice for studying Laminaria cytology by transmission electron microscopy.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
G. Jiménez-Galisteo ◽  
T. G. Villa ◽  
T. Vinuesa ◽  
M. Viñas ◽  
A. Domínguez ◽  
...  

Gordonia jacobaea was isolated and characterized in the Department of Microbiology, University of Santiago de Compostela, in 2000. Here we present the draft genome sequence of this species, which will improve our understanding of the diversity and the relation of the cell wall proteins of G. jacobaea with other mycolata.


2017 ◽  
Vol 16 (11) ◽  
pp. 1958-1971 ◽  
Author(s):  
Svante Resjö ◽  
Maja Brus ◽  
Ashfaq Ali ◽  
Harold J. G. Meijer ◽  
Marianne Sandin ◽  
...  

2003 ◽  
Vol 30 (6) ◽  
pp. 577 ◽  
Author(s):  
Alfonso Ros Barceló ◽  
Federico Pomar ◽  
Matías López-Serrano ◽  
Maria Angeles Pedreño

Peroxidases are heme-containing enzymes that catalyse the one-electron oxidation of several substrates at the expense of H2O2. They are probably encoded by a large multigene family in grapevines, and therefore show a high degree of polymorphism. Grapevine peroxidases are glycoproteins of high thermal stability, whose molecular weight usually ranges from 35 to 45 kDa. Their visible spectrum shows absorption bands characteristic of high-spin class III peroxidases. Grapevine peroxidases are capable of accepting a wide range of natural compounds as substrates, such as the cell wall protein extensin, plant growth regulators such as IAA, and phenolics such as benzoic acids, stilbenes, flavonols, cinnamyl alcohols and anthocyanins. They are located in cell walls and vacuoles. These locations are in accordance with their key role in determining the final cell wall architecture, especially regarding lignin deposition and extensin insolubilization, and the turnover of vacuolar phenolic metabolites, a task that also forms part of the molecular program of disease resistance. Although peroxidase is a constitutive enzyme in grapevines, its levels are strongly modulated during plant cell development and in response to both biotic and abiotic environmental factors. To gain an insight into the metabolic regulation of peroxidase, several authors have studied how grapevine peroxidase and H2O2 levels change in response to a changing environment. Nevertheless, the results obtained are not always easy to interpret. Despite such difficulties, the response of the peroxidase–H2O2 system to both UV-C radiation and Trichoderma viride elicitors is worthy of study. Both UV-C and T. viride elicitors induce specific changes in peroxidase isoenzyme / H2O2 levels, which result in specific changes in grapevine physiology and metabolism. In the case of T. viride-elicited grapevine cells, they show a particular mechanism for H2O2 production, in which NADPH oxidase-like activities are apparently not involved. However, they offer a unique system whereby the metabolic regulation of peroxidase by H2O2, with all its cross-talks and downstream signals, may be elegantly dissected.


1968 ◽  
Vol 22 (5) ◽  
pp. 545-548 ◽  
Author(s):  
W. C. Waggener ◽  
A. J. Weinberger ◽  
R. W. Stoughton

Dilute nitric, sulfuric, and perchloric acids are applicable as solvents for spectrophotometry up to 250°C over the following ranges: 0 to 1.0 f HNO3 from 0.6 to 1.2 μ; 0 to 0.2 f H2SO4 from 0.25 to 1.2 μ; and 0 to 1.0 f DClO4 from 0.25 to 1.8 μ. Each of these acids reacts measurably with the titanium cell wall and the sapphire windows at rates which increase with acidity and temperature. This corrosion affects the spectral measurements as a function of time and is associated with deterioration of cell window surfaces and the presence in the sample of dissolved and suspended corrosion products. These results are part of our more general program for the development of equipment and technique for routine spectrophotometry of pure liquids and solutions over a wide range of temperature and pressure.


2008 ◽  
Vol 74 (12) ◽  
pp. 3764-3773 ◽  
Author(s):  
Dina Raafat ◽  
Kristine von Bargen ◽  
Albert Haas ◽  
Hans-Georg Sahl

ABSTRACT Chitosan is a polysaccharide biopolymer that combines a unique set of versatile physicochemical and biological characteristics which allow for a wide range of applications. Although its antimicrobial activity is well documented, its mode of action has hitherto remained only vaguely defined. In this work we investigated the antimicrobial mode of action of chitosan using a combination of approaches, including in vitro assays, killing kinetics, cellular leakage measurements, membrane potential estimations, and electron microscopy, in addition to transcriptional response analysis. Chitosan, whose antimicrobial activity was influenced by several factors, exhibited a dose-dependent growth-inhibitory effect. A simultaneous permeabilization of the cell membrane to small cellular components, coupled to a significant membrane depolarization, was detected. A concomitant interference with cell wall biosynthesis was not observed. Chitosan treatment of Staphylococcus simulans 22 cells did not give rise to cell wall lysis; the cell membrane also remained intact. Analysis of transcriptional response data revealed that chitosan treatment leads to multiple changes in the expression profiles of Staphylococcus aureus SG511 genes involved in the regulation of stress and autolysis, as well as genes associated with energy metabolism. Finally, a possible mechanism for chitosan's activity is postulated. Although we contend that there might not be a single classical target that would explain chitosan's antimicrobial action, we speculate that binding of chitosan to teichoic acids, coupled with a potential extraction of membrane lipids (predominantly lipoteichoic acid) results in a sequence of events, ultimately leading to bacterial death.


1991 ◽  
Vol 4 (2) ◽  
pp. 184-190 ◽  
Author(s):  
K L Ruoff

Streptococci requiring either pyridoxal or L-cysteine for growth were first observed 30 years ago as organisms forming satellite colonies adjacent to colonies of "helper" bacteria. Although they were previously considered nutritional mutants of viridans streptococcal species, the nutritionally variant streptococci (NVS) are currently thought to belong to distinct species of the genus Streptococcus. NVS strains may display pleomorphic cellular morphologies, depending on their growth conditions, and are distinguished from most other streptococci by enzymatic and serological characteristics and the presence of a cell wall chromophore. NVS are found as normal inhabitants of the oral cavity, and in addition to their participation in endocarditis, they have been isolated from a wide range of clinical specimens. Endocarditis caused by NVS is often difficult to eradicate; combinations of penicillin and an aminoglycoside are recommended for treatment. The unique physiological features of the NVS contribute to the difficulties encountered in their recovery from clinical specimens and may play a role in the problems associated with successful treatment of NVS endocarditis.


Sign in / Sign up

Export Citation Format

Share Document