scholarly journals The Relationship between Natural Pyrite and Impurity Element Semiconductor Properties: A Case Study of Vein Pyrite from the Zaozigou Gold Deposit in China

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Shuhao Wang ◽  
Junfeng Shen ◽  
Baisong Du ◽  
Kexin Xu ◽  
Zhengshuai Zhang ◽  
...  

Pyrite is a common sulfide mineral in gold deposits, and its unique thermoelectricity has received extensive attention in the field of gold exploration. However, there is still a lack of detailed research and direct evidence about how impurity elements affect mineral semiconductor properties. In this paper, combined with first-principles calculations, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) mapping technology and in situ Seebeck coefficient scanning probe technology were used to study the law of changing semiconductor properties in pyrite containing impurity elements such as As, Co, Ni, and Cu. The results showed that pyrite containing arsenic is a P-type semiconductor, and pyrites containing Ni, Co, Cu, and other elements are N-type semiconductors. When P-type pyrites containing As were supplemented with Ni, Cu, and other elements, the semiconductor type changed to N-type. However, Co addition did not change the semiconductor type of arsenic-rich pyrite. Pyrite formed under different temperature conditions tended to be enriched with different combinations of impurity elements, leading to the relative accumulation of P-type or N-type pyrites.

2020 ◽  
Vol 12 (12) ◽  
pp. 1458-1463
Author(s):  
Li Zhu ◽  
Xiaomeng Chong ◽  
Yu Zhao ◽  
Mingzhe Xu ◽  
Lihui Yin

An inductively coupled plasma spectroscopy method was established to detect 29 elemental impurities in ceftriaxone sodium for injection by nanocomposite, and also used to detect the elemental impurities in the generic, domestic original and foreign original ceftriaxone sodium for injection. This paper for the first time analysed the possible sources of elemental impurities and their potential impacts on the drug quality based on the process. The results showed that zinc and potassium were detected in both the generic drug and the domestic original ceftriaxone sodium for injection, and zinc was not detected but potassium was detected in the foreign original drug; the content of zinc in the generic drug was significantly higher than that in the domestic original drug, and the content of potassium in generic drug and domestic original drug was higher than that in the foreign original drug, according to the process, the elemental impurities may come from the activated carbon or nanocarriers used in the process, and further stability analysis of the samples showed that the stability of the generic drug was slightly lower than that of the original drug, so it was speculated that impurity elements might also be one of the reasons for its instability.


2020 ◽  
Vol 115 (2) ◽  
pp. 241-277 ◽  
Author(s):  
Evan C.G. Hastie ◽  
Daniel J. Kontak ◽  
Bruno Lafrance

Abstract Recognizing if and how Au is remobilized, in solid, melt, or fluid state, is critical for understanding the origin of high-grade ore zones in Au deposits. When evidence for Au remobilization can be demonstrated, then primary versus secondary processes can be distinguished, resulting in a more complete understanding of Au deposit formation. To address this, samples from two Au deposits, Jerome and Kenty, in the Archean Swayze greenstone belt of northern Ontario, Canada, together with archived samples from 39 high-grade Au deposits from the Abitibi greenstone belt across Ontario and Quebec, were geochemically characterized using integrated scanning electron microscopy-energy dispersive spectroscopy and electron microprobe imaging and analyses in addition to laser ablation-inductively coupled plasma-mass spectrometry elemental mapping. These data provided the basis to develop a model for Au remobilization and upgrading of Au that is widely applicable to orogenic gold settings. Data for the Jerome deposit indicate that Au uptake into early pyrite was not due to pulsing of different fluids, but instead was predominantly controlled by S availability, whereby the oscillatory/sector zoning in pyrite resulted from the substitution of As into S sites during rapid growth due to local chemical disequilibrium. In addition, Au-bearing pyrite from both the Jerome and Kenty deposits records textures, such as porosity development coincident with the presence of native gold and accessory sulfide phases, that are strongly suggestive of coupled dissolution-reprecipitation (CDR) reactions that liberated Au and associated elements from earlier auriferous (100–5,000 ppm Au) pyrite. During the remobilization process, Au and Ag were decoupled, which resulted in (1) a change in Au/Ag ratios of 0.5 to 5 in early pyrite to ≈9 in the new native gold (900 Au fineness) and (2) incorporation of Ag into cogenetic secondary mineral phases (e.g., chalcopyrite, tetrahedrite, and galena). Evidence for an association of low-melting point chalcophile elements (LMCE; Hg, Te, Sb, and Bi) with Au at the Jerome, Kenty, and many (>50%) of the 39 historic deposits sampled, along with native gold filling structurally favorable sites in vein quartz in all samples, indicates a fluid might not have been the only factor contributing to remobilization. This systematic Au-LMCE association strongly supports a model whereby Au is released by CDR reactions and is then remobilized by fluid-mediated, LMCE-rich melts that began to form at 335°C and/or by local, nanoparticle (nanomelt?) transport during deformation and metamorphism. Conclusions drawn from this study have implications for Au deposits globally and can account for the common presence of coarse-grained, commonly crystalline, native gold filling fractures in quartz and the paragenetically late-stage origin of gold in veins. They can also better explain the inability of Au in solution remobilization models to account for locally high gold grades, given the relatively low solubility of Au in hydrothermal fluids.


Sign in / Sign up

Export Citation Format

Share Document