scholarly journals What Affects Dewatering Performance of High Density Slurry?

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 761
Author(s):  
Yunhui Li ◽  
Heather Kaminsky ◽  
Xue Yuki Gong ◽  
Yijia Simon Sun ◽  
Mohammed Ghuzi ◽  
...  

The dewatering of flocculated high density slurry presents a significant challenge to most mining industries. The new technologies to treat high density slurry require a consistent and robust flocculation method in order to enter the market of tailings management. The flocculation of high density slurry, however, due to its complexity, is always a challenge to be undertaken appropriately and to evaluate the dewatering performance correctly. This paper probes the complexity by using a torque-controlled mixing technique to demonstrate the influence of feed properties, polymer type, polymer dosage, and mixing conditions on dewatering performance. The study shows that flocculant should be dosed at the optimal range to achieve the highest dewatering performance. A full dosage responsive curve including under dosage, optimal dosage, and overdosage is critical to evaluate the dewatering performance of high density slurries and flocculants. The mixing conditions such as mixing speed, mixing time, and geometry of the mixing impeller affect the flocculation efficacy. It was found that the dewatering performance of high density slurry is sensitive to solids content, water chemistry, and clay activity. High sodicity and high clay activity in the high density slurry decreases the dewatering performance. Therefore, it is critical to evaluate flocculants across multiple feeds and dosages with replication in order to select optimal dewatering performance. Using multiple key performance indicators (KPIs) to build technical and economic criteria is also critical for polymer evaluation.

2021 ◽  
Vol 13 (16) ◽  
pp. 8789
Author(s):  
Giovanni Bianco ◽  
Barbara Bonvini ◽  
Stefano Bracco ◽  
Federico Delfino ◽  
Paola Laiolo ◽  
...  

As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.


2017 ◽  
Vol 45 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Ersin ATAY ◽  
Seckin GARGIN ◽  
Ahmet ESITKEN ◽  
N. Pinar GUZEL ◽  
A. Nilgun ATAY ◽  
...  

Orchard performance is influenced by weed competition. In this study, the effects of weed competition on nutrient contents, chemical and physical fruit quality properties were sought. The study was carried out in a high-density apple orchard (‘Golden Delicious’/M.9) over two consecutive growing seasons. The effect of weed competition was studied at three different levels: weak, moderate and strong. Fruit firmness, soluble solids content, macronutrients (such as nitrogen, potassium and calcium) and potassium+magnesium/calcium ratio in fruit were significantly affected by weed competition. Strong weed competition negatively affected soluble solids content and potassium+magnesium/calcium ratio. In both trial years, soluble solids content was significantly higher in weak weed competition. In the first year of the study, soluble solids content ranged between 13.77±0.06% (strong weed competition) and 15.20±0.10% (weak weed competition). In the following year, soluble solids content values were determined as 13.13±0.23% in strong weed competition and 13.83±0.21% in weak weed competition. Weak weed competition showed superiority for fruit weight and potassium+magnesium/calcium ratio. As a whole, this study indicates that insufficient weed control in tree rows might be a limiting factor for fruit quality in high-density apple orchards.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1664
Author(s):  
Do Hoon Cho ◽  
Seong Min Seo ◽  
Jang Baeg Kim ◽  
Sri Harini Rajendran ◽  
Jae Pil Jung

With the continuous miniaturization of electronic devices and the upcoming new technologies such as Artificial Intelligence (AI), Internet of Things (IoT), fifth-generation cellular networks (5G), etc., the electronics industry is achieving high-speed, high-performance, and high-density electronic packaging. Three-dimensional (3D) Si-chip stacking using through-Si-via (TSV) and solder bumping processes are the key interconnection technologies that satisfy the former requirements and receive the most attention from the electronic industries. This review mainly includes two directions to get a precise understanding, such as the TSV filling and solder bumping, and explores their reliability aspects. TSV filling addresses the DRIE (deep reactive ion etching) process, including the coating of functional layers on the TSV wall such as an insulating layer, adhesion layer, and seed layer, and TSV filling with molten solder. Solder bumping processes such as electroplating, solder ball bumping, paste printing, and solder injection on a Cu pillar are discussed. In the reliability part for TSV and solder bumping, the fabrication defects, internal stresses, intermetallic compounds, and shear strength are reviewed. These studies aimed to achieve a robust 3D integration technology effectively for future high-density electronics packaging.


2019 ◽  
Vol 24 (3) ◽  
pp. 274-283 ◽  
Author(s):  
Vytaute Starkuviene ◽  
Stefan M. Kallenberger ◽  
Nina Beil ◽  
Tautvydas Lisauskas ◽  
Bastian So-Song Schumacher ◽  
...  

Due to high associated costs and considerable time investments of cell-based screening, there is a strong demand for new technologies that enable preclinical development and tests of diverse biologicals in a cost-saving and time-efficient manner. For those reasons we developed the high-density cell array (HD-CA) platform, which miniaturizes cell-based screening in the form of preprinted and ready-to-run screening arrays. With the HD-CA technology, up to 24,576 samples can be tested in a single experiment, thereby saving costs and time for microscopy-based screening by 75%. Experiments on the scale of the entire human genome can be addressed in a real parallel manner, with screening campaigns becoming more comfortable and devoid of robotics infrastructure on the user side. The high degree of miniaturization enables working with expensive reagents and rare and difficult-to-obtain cell lines. We have also optimized an automated imaging procedure for HD-CA and demonstrate the applicability of HD-CA to CRISPR-Cas9- and RNAi-mediated phenotypic assessment of the gene function.


2005 ◽  
Vol 15 (5) ◽  
pp. 314-325 ◽  
Author(s):  
C. Lacoste ◽  
L. Choplin ◽  
P. Cassagnau ◽  
A. Michel

Abstract Polymer melts can be mixed with many monomers, plasticizers, antistatics or foaming additives. Properties of such mixtures can change during blending because of chemical reactions like polymerization or crosslinking. The process may be carried out either in stirred tanks, extruders or in motionless mixers. In this paper we focused on the mixing time and the diffusion time of reagent, plasticizer and polymer thanks to rheological tools, and on the way how rheological properties can be studied during chemical reaction in polymer blending. The concept of rheoreactor and Couette analogy were introduced since we have a reactor on our disposal that can mix solution and measure rheological properties without taking sample. This apparatus appears to be an appreciable tool in complement of internal mixers that are specific to polymer blending. For example, we show the importance of the competition between mixing time and reaction time for reactive systems.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 582 ◽  
Author(s):  
Claudia Castillo ◽  
Christian F. Ihle ◽  
Ricardo I. Jeldres

The presence of fine and ultra-fine gangue minerals in flotation plants can contribute to sub-optimal valuable ore recovery and incomplete water recycling from thickeners, with the performance of the latter equipment relying on adequate flocculation. In order to study the dependence of the flocculation process on the suspension-flocculant mixing conditions, a series of experiments—chosen using chemometric analysis—were carried out by varying mixing conditions, solid concentration, water salinity and flocculant dosage. To this purpose, two different tailings (both featuring coarse and fine content) were considered and a response surface methodology based on a Doehlert experimental design was used. The results suggest that the operational conditions to optimise the flocculated tailings settling rate and the suspended solids that report to a thickener overflow are not necessarily the same. This is a reasonable outcome, given that the settling rate depends on the coarse aggregates generated in the slurry, while the overflow solids content is governed both by either fine particle content (and its characteristics) or small aggregates. It is inferred that to maximise dewatering performance two stages should be involved—a separate treatment of the thickener overflow to remove fine content and thickening at optimal flocculant dosage to enhance this process.


2012 ◽  
Vol 550-553 ◽  
pp. 2932-2935
Author(s):  
Hong Juan Zheng ◽  
Yan Rong Wang ◽  
Zhi Wei Zhao ◽  
Lin Qi Zhang

PLA has excellent processing property and good thermal stability, which are closely related to the processing technology, and the general processing temperature can be controlled in 170~230°C. Effects of different processing conditions (internal mixing temperature, internal mixing time and internal mixing speed) on the properties of PLA were discussed. The results show that the mechanical properties and other performance of PLA can be obviously enhanced by internal mixing. Internal mixing time and internal mixing speed have little effects on the performance of PLA, but the internal mixing temperature has obvious effect on the properties of PLA. PLA has the optimum properties when the internal mixing time is 5min, internal mixing speed is 20r/min and internal mixing temperature is 190°C. The spherocrystal size and spherocrystal rate of PLA are influenced strongly by the mixing conditions.


Author(s):  
Jagan M. Gudimettla ◽  
Michael F. Praul ◽  
Jim Grove

Concrete materials and paving technologies have evolved considerably during the past century. However, testing technologies for concrete during construction have not kept pace. Some of the tests that are routinely used are not necessarily performance indicators and some are not made in real time. Seven new technologies are presented that are simple, real-time, field implementable, and economical and in many cases are performance indicators. Although some of these technologies could be used during the mixture design stage, others could be used during construction and some for both purposes. These technologies can be used to supplement or, in some cases, to replace the traditional tests for paving concrete. The discussion focuses on three items: ( a) traditional tests for paving concrete, ( b) new tests and technologies that could be used to supplement or replace the traditional tests, and ( c) suggested future specifications. Data collected by the FHWA Mobile Concrete Laboratory from its technology implementation efforts are presented to support the narrative on the benefits of these new technologies.


1998 ◽  
Vol 531 ◽  
Author(s):  
S. Takagi ◽  
N. Ishii ◽  
D. Hashimoto

AbstractThis paper presents the current advances in the development of materials in the field of telecommunication wiring together with the background which created the need for the new technologies. The background is somewhat unique to the current socio-economical situation of Japan. The key technical areas, which are addressed in this paper, are; (1) fibers for transmission of over 1 Tbps by utilizing WDM (wavelength division multiplexing), (2) fibers for fiber amplifiers to replace repeaters within trunk lines, (3) high density cables with over 1000 fiber counts, (4) ABF (air blown fiber) for access system, (5) plastic optical fibers wiring in premises or offices operating at the transmission speed of over 200 Mbps.


2015 ◽  
Vol 1087 ◽  
pp. 434-438
Author(s):  
Wan Nur Azrina Wan Muhammad ◽  
Yoshiharu Mutoh

The effects of mixing conditions, i.e; mixing speed and mixing duration on the mechanical properties of the magnesium based composites were investigated. The hardness, tensile strength and microstructure of composites were studied. It was found that increase of the mixing speed and prolong the mixing time can improved the distribution of SiC particle and mechanical properties of magnesium based composites.


Sign in / Sign up

Export Citation Format

Share Document